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Release Statement 
Modelled Population Estimates for Papua New Guinea, version 1.0 
 
27 July 2023  
 
Original Release:  27 July 2023 
 
 
ABSTRACT 
This project was initiated in 2021 to generate modelled population estimates for Papua New 
Guinea (PNG) to support their census preparations. It was powered by the Australian 
Government through the PNGAus partnership, the United Nations Population Fund (UNFPA) 
and the PNG National Statistical Office.  
The project team combined recent 2019-2021 malaria bednet campaign data, urban structural 
listing 2021 data, and geospatial covariates to model and estimate population numbers at census 
unit level, and aggregate at other relevant administrative units (e.g., national, province, and 
districts) using a Bayesian statistical hierarchical modelling framework. The approach facilitated 
simultaneous accounting for the multiple levels of variability within the data hierarchy. It also 
allowed the quantification of uncertainties in parameter estimates. 
These model-based population estimates can be considered as most accurately representing the 
years 2020-21. This time period corresponds to the malaria survey and urban structural listing 
survey observations (2019-2021; median year: 2020) and the period of the satellite imagery 
used to generate settlement footprints (2021). Although the methods were robust enough to 
explicitly account for key random biases within the datasets, it is noted that systematic biases, 
which may arise from sources other than random errors within the observed data collection 
process, are most likely to remain.  
 
These data were produced by the WorldPop Research Group at the University of Southampton 
in collaboration with the National Statistical Office of PNG and UNFPA under the project called 
“Population-modelled estimation for Papua New Guinea in collaboration with the National 
Statistical Office, 2021-22” (PNG40-0000004504). The final statistical modelling was designed, 
developed, and implemented by Chris Nnanatu. Data processing was done by Amy Bonnie with 
additional support from Tom Abbott, Tom McKeen, Heather Chamberlain, Ortis Yankey, Duygu 
Cihan and Assane Gadiaga. Project oversight was done by Attila Lazar and Andy Tatem. 
Household survey listing data were provided by the National Statistical Office, and the 
settlement footprint was generated by Planet. 
 
Please, note that the same modelled population data (with minor rounding difference of 41 in the 
national total) can also be downloaded from the NSO’s website: 
https://www.nso.gov.pg/statistics/population/ 
 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nso.gov.pg%2Fstatistics%2Fpopulation%2F&data=05%7C01%7CA.Lazar%40soton.ac.uk%7C42cb1c333cdd4d5d956008db8120743e%7C4a5378f929f44d3ebe89669d03ada9d8%7C0%7C0%7C638245748609143320%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SDgNbvILprCTPRCJ7nxVGEKW4rL3y7Iqu2cnNzYhwmk%3D&reserved=0
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The authors followed rigorous procedures designed to ensure that the used data, the applied method 
and thus the results are appropriate and of reasonable quality. If users encounter apparent errors or 
misstatements, they should contact WorldPop at release@worldpop.org. 
 
WorldPop, University of Southampton, and their sponsors offer these data on a "where is, as is" basis; 
do not offer an express or implied warranty of any kind; do not guarantee the quality, applicability, 
accuracy, reliability or completeness of any data provided; and shall not be liable for incidental, 
consequential, or special damages arising out of the use of any data that they offer. 
 
 
RELEASE CONTENT 

1. PNG_population_v1_0_adminTotals.zip 
2. PNG_population_v1_0_agesex.zip 
3. PNG_population_v1_0_methods.zip  

 
 
LICENSE 
These data may be redistributed following the terms of a Creative Commons Attribution 4.0 

International (CC BY 4.0) license. 
 
 
SUGGESTED CITATIONS 
WorldPop and National Statistical Office of Papua New Guinea. 2022. Census-independent 
population estimates for Papua New Guinea (2020-21), version 1.0. WorldPop, University of 
Southampton. DOI: 10.5258/SOTON/WP00763 
 
 
  

mailto:release@worldpop.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 
 

3 

FILE DESCRIPTIONS 
The projection for all GIS files is the geographic coordinate system WGS84 (World Geodetic 
System 1984). 
 
PNG_population_v1_0_adminTotals.zip 
This zip file contains the following seven files: 
 
 

LLG_estimates_main_gamma_gaussian.csv 
District_estimates_main_gamma_gaussian.csv 
Province_estimates_main_gamma_gaussian.csv 
These csv files contain estimates of total population size at LLG, District and Province 
levels across PNG. Fields: names (admin unit names), total (estimated most likely total 
population within the admin unit), lower (2.5% Credible Interval of the estimates total 
population), upper (97.5% CI of the estimates total population).  
 
National_estimates_main_gamma_gaussian.csv 
This csv file contains estimates of total population size of the PNG. Fields: total (estimated 
most likely total population within the LLG, lower.2.5% (2.5% Credible Interval of the 
estimates total population), median.50% (50% CI of the estimates total population), 
upper.97.5% (97.5% CI of the estimates total population).  

 
gamma_gaussian_LLG.shp 
gamma_gaussian_district.shp 
gamma_gaussian_province.shp 
These polygon shapefile contain estimates of total population size at LLG, District and 
Province levels across PNG. Fields: names (admin unit names), total (estimated most likely 
total population within the admin unit), lower (2.5% Credible Interval of the estimates total 
population), upper (97.5% CI of the estimates total population), Uncertaint (estimated 
uncertainty – see below for further details).  
 
The uncertainty values are the difference between the upper and lower 95% credible 
intervals of the posterior prediction divided by the mean of the posterior prediction: (upper 
– lower)/mean. As a consequence, cells with a mean prediction of 0 result in NA 
uncertainty values. These numbers provide a comparable measure of uncertainty in 
population estimates across the country. Uncertainty estimates cannot be summed across 
admin units to produce an uncertainty measure for a multi-cell area. Uncertainty for 
multiple admin units can only be calculated using the admin units’ posterior predictions. 
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PNG_population_v1_0_agesex.zip 
This zip file contains 4 csv files: 
 

agesex_gamma_gaussian_llg.csv 
agesex_gamma_gaussian_province.csv 
Each file provides population estimates for an age-sex group for each LLG and Province 
across PNG. Fields: 

• xxx_Name: LLG or Province names 
• age: the age classes (< 1; 1 to 4; 5 to 9; 10 to 14; 15 to 19; 20 to 24; 25 to 29; 30 

to 34; 35 to 39; 40 to 44; 45 to 49; 50 to 54; 55 to 59; 60 to 64; 65 to 69; 70 to 
74; 75 to 79; 80 +) 

• sex: These are labelled with either an “m” (male) or an “f” (female) 
• total: total population within the admin unit 
• lower: 2.5% Credible Interval of the estimates total population 
• upper: 97.5% CI of the estimates total population 

 
agesex_gamma_gaussian_llg18.csv 
agesex_gamma_gaussian_prov18.csv 
Each file provides population estimates for an age-sex group for each LLG and Province 
across PNG. Fields: 

• xxx_Name: LLG or Province names 
• age: the age classes (<18; 18+) 
• sex: These are labelled with either an “m” (male) or an “f” (female) 
• total: total population within the admin unit 
• lower: 2.5% Credible Interval of the estimates total population 
• upper: 97.5% CI of the estimates total population 

While this data represents population counts, values contain decimals, i.e. fractions of 
people. This is because both the input population data and age-sex proportions contain 
decimals. For this reason, it is advised to aggregate the rasters at a coarser scale. For 
example, if four grid cells next to each other have values of 0.25 this indicates that there 
is 1 person of that age group somewhere in those four grid cells. 

 
PNG_population_v1_0_methods.zip 
 PNG_population_v1_0_methods.pdf 

This pdf file contains a report describing the statistical methods developed to produce 
these population estimates.   

 
gg_model_covariates_selection.R 
gg_model_final_main.R 
gg_model_cross_validation.R 
These ‘R’ scripts contains the model code. These codes are also published on GitHub 
(https://github.com/wpgp/PNG_Bottom_Up_Modelling).  

https://github.com/wpgp/PNG_Bottom_Up_Modelling
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RELEASE HISTORY 
Version 1.0 (27 July 2023) [doi: 10.5258/SOTON/WP00763] 

- Original release of the data set. 
 
ASSUMPTIONS AND LIMITATIONS 
These population estimates most likely represent the 2020-21 time period, but because of the 
different years of the input data used to build the model, a precise time point cannot be 
allocated. Most of the population observations came from 2020, but the most recent data were 
from 2021. The settlement data also reflected 2021. This settlement data primarily determined 
the spatial distribution of the gridded population estimates, whereas the observations defined 
the magnitude of population. This model assumes that population densities and age/sex 
distributions observed during the earlier time period are still representative of the more recent 
period. 
Since the survey data were not geolocated (i.e., there were no GPS points or cluster boundaries), 
the NSO’s CU boundaries were adopted as the most accurate representation of survey locations. 
There was an overlap of 524 CUs within the two survey datasets. As they did not exactly match 
and none of them were consistently higher or lower than the other, thus an average in the 
overlapping CUs total count was calculated and used in the population model. This represents an 
area of uncertainty that requires further investigation. 
It is known that some settlements are under permanent canopy cover and were not captured in 
the Planet settlement data. This is a limitation common to all population modelling efforts of this 
type that are based on imagery, though the statistical modelling approaches put forward here 
recognise this and aim to limit the impacts. To remedy this, CU was adopted as the lowest spatial 
scale in the modelling. Settlement locations were used instead of Planet data as a direct input, 
and alternative model estimations were implemented with and without settlement data to check 
the validity of the model results. 
Among the limitations, it is important to note that due to lack of data on such factors, the 
estimates provided do not explicitly account for population migration. 
 
SOURCE DATA 

• Urban Structural Listing (2021): 1,959 Census Units containing the characteristics of 
structures within urban areas. Includes household counts. 

• Malaria Long-Lasting Insecticidal Net (LLIN) survey data (2019-21): 15,468 Census Units 
containing household counts and age/sex. 

• Administrative boundary shapefiles were provided for Papua New Guinea by the NSO 
(CU boundaries and LLG-level boundaries). 

• Planet settlement raster (www.planet.org): experimental non-public settlement data 
product providing information on the locations of buildings/settlements in gridded 
(raster) format (spatial resolution of approximately 4.77 metres) from cloud-free satellite 
imagery from a 7-month period (July 2021 – January 2022).  

Other geospatial covariates: please see Appendix 1 of the methods report 
(PNG_population_v1_0_methods.pdf).  
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METHODS OVERVIEW 
The methods report contains the full documentation of the PNG model application. Here, we will 
focus on the final two-stage modelling approach only. Further information on other alternative 
models tested are available in the technical report (WorldPop and NSO-PNG. 2022).  
Overall, six key steps are involved in the entire modelling processes that produced the 
population estimates (Figure 1).  

 

Figure 1. Bottom-up population modelling workflow. 

 

Data preparations 
The first and second steps of the process which may happen simultaneously involve the 
preparation of both input population data and geospatial covariates. Data preparation steps 
included (i) topological checks on administrative boundaries, (ii) matching survey data cluster ids 
with CU ids, (iii) aggregating the Planet settlement data to 100m resolution grids, (iv) selecting 
the best performing geospatial covariates, and (v) integrating all data sources to a joint database. 
All data preparations were done in ArcGIS pro (Esri, 2018), QGIS (QGIS Development Team, 
2022) using R (R Core Team, 2021). 

Topological checks were carried out in both Esri’s ArcGIS Pro (v.2.7) and QGIS (v.3.20) on the 
administrative boundary shapefiles – both those provided for us and those we generated by 
aggregating them. The ‘Topology Checker’ plugin and ‘Fix geometries’ tool in QGIS, and the 
'Check geometry’ tool in ArcGIS Pro were utilised. A topology was also created within the ArcGIS 
Pro project geodatabase to identify errors. 

Of the total of 32100 CUs, malaria survey for 17,788 CUs, of which 15,468 could be matched to 
the administrative boundary shapefile. Therefore, together with the 1,959 CUs  which have 
Urban Structural Listing data, there were 16,903 CUs available for training the population model. 
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This model was then used to predict (estimate) populations in the 15,197 unsampled CUs (Figure 
2). 

 

 

Figure 2: Map of Papua New Guinea showing all the 16,903 CUs with observations (green) and 
the 15,197 unsampled CUs (grey).  

 

Geospatial Covariates Selection 
The selection of the most important geospatial covariates (predictors) that most influenced 
population density and/or spatial distribution was based on (forward-backward) stepwise 
regression (James et al., 2013; Bruce and Bruce, 2017) using Generalized Linear Model (GLM; 
McCullagh and Nelder, 1989). Note that these covariates must have values for the entire area, 
and they must include geographical information on location. Further checks were carried out on 
the selected covariates to ensure that the issue of multicollinearity that could give rise to 
variance inflation does not arise. This was done by using the vif() function of the ‘car’ package 
such that covariates with vif values are retained as a rule of thumb (James et al., 2013). These 
processes were carried out for both the two-stage modelling processes when correcting biases in 
the building count and when using the corrected bias to estimate population density. Eventually, 
13 and 15 covariates were selected for the building count and population density models, 
respectively (Table 1). 
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Table 1: The final model covariates selected via stepwise regression 

Variable Description Population 
density model 

Building 
intensity model  

X3 Mean total daily precipitation ✓ ✓ 
X11 Baseflow Index 1 ✓  
X15 Baseflow Recession ✓ ✓ 
X27 Motorized friction surface  ✓ 
X29 Distance to health providers ✓  
X30 Distance to local roads ✓ ✓ 
X31 Distance to main roads ✓ ✓ 
X32 Distance to marketplace ✓  
X33 Distance to places of education  ✓ 
X34 Distance to places of worship  ✓ 
X35 Distance to aquatic vegetation areas ✓ ✓ 
X36 Distance to artificial surface edges ✓ ✓ 
X38 Distance to cultivated areas  ✓ 
X39 Distance to ESA-CCI-LC inland water ✓  
X45 Distance to OSM major waterways ✓  
X46 Distance to shrub area edges ✓ ✓ 
X48 Distance to woody areas ✓  
X50 Resampled DMSP-OLS night-time lights  ✓ 
X51 Resampled VIIRS night-time lights ✓  
X52 Slope ✓ ✓ 

 

Two-stage Bayesian Hierarchical Bottom-Up Modelling 
Here, we briefly describe the two-step bottom-up modelling (Leasure et al.,2020 and Wardrop et 
al., 2018) approach employed here. As noted above, in the first stage, we corrected biases in the 
building intensity derived from the settlement data via the following model specifications:  

STAGE ONE: Let 𝐵! denote the building intensity for the 𝑖th area unit so that the log-
transformed value is normally distributed with mean and precision 𝐵#! and 𝜏", respectively. Then 
the full hierarchical model is given by,   

log(𝐵!) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝐵#! , 1/𝜏") 

𝐵#! = 𝜂!
(") = 𝛽% +8𝛽&𝑥!&

'(

&)'

+ 𝑓*+,-.(𝑠!) + 𝑓+(𝑡) + 𝑓+.0(𝑡, 𝑝) 

𝜋(𝛽%) ∝ 1 

𝛽& ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1 , 1/𝜏1) 

𝑓*+,-. ∼ 𝐺𝑀𝑅𝐹 

𝑓+ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏+) 
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𝑓+,0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙F0, 1, 𝜏+,0G 

                                               𝜏3 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼4, 𝛽4), where 𝑗 ∈ {𝐵, 𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(1) 

Where 𝜂! is the linear predictor; 𝛽% is the intercept which is the baseline average building 
intensity when the effect of the geospatial covariates 𝑥!,', … , 𝑥!,'( on the building intensity value 
is zero; 𝛽', … , 𝛽'( are the corresponding fixed effects coefficients to be estimated; 𝑓*+,-. is the 
spatially correlated random effect which  captures shared characteristics among neighbouring 
spatial units and allows us to more accurately estimate response in areas with little or no 
observations; 𝑓+(. ) and 𝑓+,0(. ) are the settlement type and province-settlement type nested 
random effects respectively. For Bayesian inference, uniform prior is assigned to the intercept 
term 𝛽%; while normal priors are assigned to the fixed effects term 𝛽&, and the random effects for 
settlement type and the settlement type – province nested effect; 𝜏3 are the corresponding 
hyperparameters which are assigned Gamma priors.  

Furthermore, The structured or correlated random effect 𝑓*+,-. is modelled as a Gaussian 
Markov Random Fields with sparse distance-dependent covariance matrix for computational 
efficiency via the integrated nested Laplace approximation – Stochastic partial differential 
equation (INLA-SPDE; Rue et al., 2009; Rue and Held, 2005; Lindgren et al., 2011) framework. 
Then the predicted building count is given by  

																																											𝐵R! = ℎ(𝐵#!)																																																(2) 

where ℎ(. ) is an appropriate inverse of the link function 𝑔(. ) which is identity in this case. This 
predicted building intensity which has now taken into account the satellite partial observations, 
and shared spatial homogeneity and heterogeneity is now used as a corrected model input for 
estimating the population density and population count in stage two. 

STAGETWO:  Let 𝑌! and 𝐷! denote the population count and the population density of the 𝑖th 
spatial unit, respectively. Then, the full hierarchical model is given by, 

𝑌! ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐷! × 𝐵R!) 

𝐷! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼5 , 𝛽5) and  𝐷Z! = 𝛼/𝛽 

log(𝐷Z!) = 𝜂!
(5) = 𝛽% +8𝛽3𝑥!3

'6

3)'

+ 𝑓*+,-.(𝑠!) + 𝑓-7*+,(𝑠!) 		+ 𝑓+(𝑡) + 𝑓+.0(𝑡, 𝑝) 

𝜋(𝛽%) ∝ 1 

𝛽8 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1 , 1/𝜏1) 

𝑓-7*+, ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 [0,
1

𝜏-7*+,
\ 

𝑓+ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏+) 

𝑓+,0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙F0, 1, 𝜏+,0G 

𝜏3 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼4, 𝛽4), where 𝑗 ∈ {𝛽, 𝑢𝑛𝑠𝑡𝑟, 𝑡, 𝑡𝑝}														(3) 
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where 𝜂!
(5) is the linear predictor; 𝛽% is the intercept which is the baseline average population 

density when the effect of the geospatial covariates 𝑥!,', … , 𝑥!,'6 is zero; 𝛽', … , 𝛽'6 are the 
corresponding fixed effects coefficients to be estimated;	𝑓*+,-.  and 𝑓-7*+, are the spatially 
correlated and spatially independent (uncorrelated) random effects, respectively. While the 
spatially dependent random effect captures shared characteristics among neighbouring spatial 
units and allows us to more accurately estimate response in areas with little or no observations, 
the spatially uncorrelated random effect captures variability due to spatial heterogeneity; 𝑓+(. ) 
and 𝑓+,0(. ) as well as the prior distributions are as defined in stage one. 

Then, with the estimated building intensity for the entire locations 𝐵R! , the predicted population 
count 𝑦_! is given by  

																			𝑦_! = �̀�! × 𝐵R! 																																																									(4) 

where  

�̀�! = expe𝛽% +8𝛽3𝑥!3

'6

3)'

+ 𝑓*+,-.(𝑠!) + 𝑓-7*+,(𝑠!) 		+ 𝑓+(𝑡) + 𝑓+.0(𝑡, 𝑝)f 

and  

𝐵R! = 𝛽% +8𝛽&𝑥!&

'(

&)'

+ 𝑓*+,-.(𝑠!) + 𝑓+(𝑡) + 𝑓+.0(𝑡, 𝑝)												(5) 

For each of the selected model, posterior sampling was carried out to ensure improved estimates 
as well as to enable uncertainty quantification for the population totals. This was followed by 
model cross-validation was carried out using k-fold (with k = 5) in which at each non-overlapping 
kth-fold, the data are randomly divided into 80% training set and 20% testing set, that is, 80% of 
the data are used to train the model while 20% are held out and used to test the model by 
predicting the values of the held data using the model parameters. A summary flow chart for the 
two-stage (two-step) modelling as described above is given in Figure 3.  
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Figure 3. Flow chart of the two-step modelling approach. Biases in the building count was first 
corrected using a model-based solution in the first step. The corrected building data is then used 
to estimate population density/population count in the second step. 

 

Population pyramids for administrative units (i.e., LLG, district and province levels) were 
produced using age/sex observations from the malaria survey data. Besides the missing age or 
sex values of the observations, the initial survey dataset was also spatially incomplete. 
Incomplete population pyramids were replaced by the next level up population pyramid (e.g. 
district level), if it was complete, assuming therefore that the demographic characteristics are the 
most similar. Therefore, LLG pyramids were replaced by district pyramids, and district pyramids 
were replaced by province pyramids, if needed. Because all population pyramids at province level 
were complete, these were used as a last resort. Finally, the age-sex proportions (i.e., population 
pyramids at LLG level) were applied to the population estimates (i.e., total LLG population) to 
allocate the modelled total populations to the different age-sex classes. 
 
All calculations were undertaken in R. The computer code can be found in the methods.zip file 
and also downloadable from GitHub (https://github.com/wpgp/PNG_Bottom_Up_Modelling).  
 
 
  

https://github.com/wpgp/PNG_Bottom_Up_Modelling
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