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Release Statement 
Modelled gridded population estimates for Nigeria 2025 (version 3.0) 
29 August 2025  
 
Abstract 
This data release provides gridded population estimates (at spatial resolution of 3 arc-
seconds, approximately 100-metre grid cells) for Nigeria, along with the estimates of the 
number of people belonging to various age and sex groups. Using robust Bayesian 
statistical hierarchical modelling framework, population modelling and estimation experts 
from WorldPop (www.worldpop.org) at the University of Southampton combined ‘head 
count’ (input population) datasets obtained from the 2022-23 National Malaria Elimination 
Program (NMEP) with settlement footprint and geospatial covariates to estimate 
population numbers at high-resolution grid cells. The approach facilitated accounting for 
the multiple levels of variability within the data, while simultaneously quantifying 
uncertainties in the parameter estimates. After capturing the spatial variability of 
population, the modelled estimates were scaled based on the UN WPP July 2025 median 
national population projections.  
These data were produced by the WorldPop Research Group at the University of 
Southampton as part of the GRID3 – Phase 2 Scaling project, with funding from the Bill 
and Melinda Gates Foundation (INV-044979). Project partners included the GRID3 Inc., 
the Center for Integrated Earth System Information (CIESIN) within the Columbia Climate 
School at Columbia University, and WorldPop at the University of Southampton. The final 
statistical modelling was designed, developed, and implemented by Chris Nnanatu 
supported by Assane Gadiaga. Data processing was done by Assane Gadiaga with 
additional support from Attila Lazar, Tom Abbott and Heather Chamberlain. Project 
oversight was done by Attila Lazar and Andy Tatem. The NMEP shared household bednet 
distribution data along with the location of the households. The settlement footprint data 
was prepared and shared by CIESIN. 
 
The authors followed rigorous procedures designed to ensure that the used data, the 
applied method and thus the results are appropriate and of reasonable quality. If users 
encounter apparent errors or misstatements, they should contact WorldPop 
at release@worldpop.org.  
 
WorldPop, University of Southampton, and their sponsors offer these data on a "where 
is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee 
the quality, applicability, accuracy, reliability or completeness of any data provided; and 

http://www.worldpop.org/
mailto:release@worldpop.org
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shall not be liable for incidental, consequential, or special damages arising out of the use 
of any data that they offer. These data are operational population estimates and are not 
official government statistics. 
 
RELEASE CONTENT 

1. NGA_population_v3_0_gridded.zip 
2. NGA_population_v3_0_agesex.zip 
3. NGA_population_v3_0_table.zip 
4. NGA_population_v3_0_mastergrid.tif 

 
LICENSE 
These data may be redistributed following the terms of a Creative Commons Attribution 
4.0 International (CC BY 4.0) license. 
 
SUGGESTED CITATIONS 
Nnanatu C.C., Gadiaga A., Abbott T. J., Chamberlain H., Lazar A. N., Tatem A. J. 
(2025). Modelled gridded population estimates for Nigeria 2025 version 3.0. WorldPop, 
University of Southampton.  (https://dx.doi.org/10.5258/SOTON/WP00782) 
 
FILE DESCRIPTIONS 
The projection for all GIS files is the geographic coordinate system WGS84 (World 
Geodetic System 1984). Kindly note that while this data represents population counts, 
values contain decimals, i.e. fractions of people. This is because both the input population 
data and age-sex proportions contain decimals. For this reason, it is advised to aggregate 
the rasters at a coarser scale. For example, if four grid cells next to each other have 
values of 0.25 this indicates that there is 1 person somewhere in those four grid cells. 
 
NGA_population_v3_0_gridded.tif 
This geotiff raster contains estimates of total population size for each approximately 100-
metre grid cell (0.0008333 decimal degrees grid) across Nigeria. The values are the 
scaled mean of the posterior probability distribution for the predicted population size in 
each grid cell. Any NA values within the national boundary will represent areas that were 
mapped as unsettled according to building footprints data, while any other NA values 
represent areas mapped as being outside Nigerian boundary.  
 
NGA_population_v3_0_agesex.zip 
This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds 
(approximately 100-metre grid cells). Each raster provides gridded population estimates 
for an age-sex group per grid cell across Nigeria. We provide 36 rasters for the commonly 
reported age-sex groupings of sequential age classes for males and females separately. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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These are labelled with either an “m” (male) or an “f” (female) followed by the number of 
the first year of the age class represented by the data. “f0” and “m0” are population counts 
of under 1-year olds for females and males, respectively. “f1” and “m1” are population 
counts of 1- to 4-year-olds for females and males, respectively. Over 4 years old, the age 
groups are in five-year bins labelled with a “5”, “10”, etc. Eighty-year-olds and over are 
represented by the groups “f80” and “m80”. We provide four additional rasters that 
represent demographic groups often targeted by programmes and interventions. These 
are “under1” (all females and males under the age of 1), “under5” (all females and males 
under the age of 5), “under15” (all females and males under the age of 15) and “f15_49” 
(all females between the ages of 15 and 49, inclusive).  
 
 
NGA_population_v3_0_table.zip 
This contains three CSV files, namely lga_pop_total_scaled.csv, 
state_pop_total_scaled.csv and national_pop_total_scaled.csv. 
lga_pop_total_scaled.csv contains population totals at the local government area level. 
The state_pop_total_scaled.csv contains population totals for each state. The 
national_pop_total_scaled.csv contains total population size according to the UN WPP 
2025 projections for Nigeria.  
 
NGA_population_v3_0_mastergrid.tif 
This geotiff raster, at a spatial resolution of 3 arc-seconds (approximately 100 m), 
contains 1s for each grid cell that is classified as settled based on the CIESIN settlement 
raster, whereas contains 0s for pixels that are identified as non-settled by CIESIN and 
within the national border. NAs represent grid cells considered to be outside Nigeria.  
 
RELEASE HISTORY 
 
Version 3.0 (29 August 2025, https://dx.doi.org/10.5258/SOTON/WP00782) 

● This gridded population estimates were produced using recent NMEP household 
listing data and CIESIN settlement information. The scaled population estimate is 
adjusted to the July 2025 median UN WPP projection.  

Version 2.1 (19 July 2023, https://dx.doi.org/10.5258/SOTON/WP00765) 
● The population map was updated using amended settlement data due to a change 

in the feature extraction algorithm. 
● Totals at ward level are the same as previous version therefore they are 

representative of the year 2019. 
Version 2.0 (17 November 2021, https://dx.doi.org/10.5258/SOTON/WP00729) 

● Refinement of gridded population estimates using more recent settlement data 
based on building footprints.  
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● Predictions of residential and non-residential buildings incorporated in the 
settlement map. 

● A different regional boundary definition was used in the model, corresponding with 
Nigerian statistical regions.  

● Representative of the year 2019. 
Version 1.2 (15 September 2020) 

● A peer-reviewed article (Leasure et al., 2020b) was added to describe the 
statistical method that were developed to produce the population estimates 
(https://doi.org/10.1073/pnas.1913050117). 

Version 1.2 (20 May 2020) 
● Gridded population estimates were added to NGA_population_v1_2_agesex.zip 

for the following demographic groups: children under 1, children under 5, children 
15, and women 15 to 49 years of age. 

Version 1.2 (26 mars 2020, https://dx.doi.org/10.5258/SOTON/WP00661) 
● Gridded population estimates were added for individual age-sex groups 

(NGA_population_v1_2_agesex.zip). 
● The SQL database “NGA_population_v1_2_sql.sql” that is used in WOPR 

applications was updated to remove unnecessary data (e.g. covariate values, 
names of administrative units). 

● Population tiles were updated with a revised color palette. This file was renamed 
from “NGA_population_v1_2_tiles_population.zip” to 
“NGA_population_v1_2_tiles.zip”.  

● Uncertainty tiles “NGA_population_v1_2_tiles_uncertainty.zip” were removed 
because they were discontinued for use in WorldPop web applications (e.g. 
https://apps.worldpop.org/woprVision). 

Version 1.2 (10 July 2019) [https://dx.doi.org/10.5258/SOTON/WP00655] 
● The previous release contained a few grid cells with erroneously high population 

estimates that resulted from the way the statistical model was summarized (based 
on 1,000 samples from posterior predictions as opposed to 10,000 samples used 
here). 

● This update changes the population estimates slightly in every grid cell. State and 
LGA totals have changed marginally but remain within 1% of previous estimates. 

● Representative of the time period from 2016 to 2017. 
 
Version 1.1 (22 February 2019) [https://dx.doi.org/10.5258/SOTON/WP00657] 

● Updated to include floating-point rasters rather than integer rasters to resolve 
rounding errors when calculating population totals for larger areas (e.g. zonal 
sums) 

Version 1.0 (11 November 2018) [https://dx.doi.org/10.5258/SOTON/WP00656] 
● Original release of Nigeria population dataset 

https://dx.doi.org/10.5258/SOTON/WP00661
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ASSUMPTIONS AND LIMITATIONS 
 
 The NMEP household listing datasets containing counts of people per household across 
nine (9) spatial units at Admin 1, namely, Adamawa, Delta, Kaduna, Kano, Katsina, 
Kwara, Niger, Osun, Taraba, were totally anonymised due to confidentiality issues. Then, 
the NMEP data were cleaned and aggregated to ward level (Admin 3) to address potential 
spatial inaccuracies and thus to ensure more accurate population estimates. The ward 
level formed the statistical model parameters training units. Other associated datasets 
were also aggregated to the ward level including the geospatial covariates and the human 
settlement datasets. The means of the gridded continuous covariates across all the grid 
cells within a given ward were obtained as the corresponding ward-level value, while 
building counts were aggregated as the sum of all buildings across all the grid cells within 
a given ward. Except the World Settlement Footprint-derived information on the evolution 
of settlement for the period 2005-2015, the geospatial covariates were collected from 
different sources at different time periods (see ‘Geospatial Covariates’ Section below for 
more details) between 2021 and 2023 to match the NMEP data collection period, and 
these were used in conjunction with the CIESIN settlement datasets that represent the 
year 2024 for the population modelling.  
 
The final population model results are scaled to the UN WPP July 2025 population 
projection value; therefore, we assume that the bottom-up model results accurately 
represent the spatial distribution of the population, and the UN projection accurately 
represents the overall total population of Nigeria.  
 
Age-sex structure data for the year 2022 that were obtained from the National Population 
Commission (NPC, 2020) were used to disaggregate the scaled gridded population totals 
into age groups and gender breakdown. Since 2022 is the last available subnational 
age/sex information from NPC, we assume that the state-level population pyramids have 
not changed between 2022 and 2025. Subnational age/sex projections from NPC were 
only available at state-level, therefore, the grid cells within individual states have identical 
age and sex proportions.  
 
 
Because the estimation methodology locates people only in settled areas as determined 
primarily by satellite-based identification of human settlements, its accuracy may be 
susceptible to volatility in settlement patterns. Areas that have been settled or abandoned 
too recently to be reflected in the satellite imagery data used to map building footprints 
(e.g.., through displacement), will not be accurately estimated. Other sources of 
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population dynamics such as seasonal migration are also not fully captured in the model. 
However, information on the evolution of settlement. and the recent demographic 
datasets utilised within the model provide an opportunity to capture recent changes in the 
population density and distribution thereby minimizing the potential impacts of the 
aforementioned settlement patterns volatility.  
 
Grid Cell Alignment 
At the start of population modelling, it is important to ensure that grid cells of the spatial 
extents of the raster files of the input and output datasets align with the extents of the 
study location of interest achieved through the use of the mastergrid of the study location. 
For the current project, please note that the mastergrid used for this version (v3.0) differs 
from the one used in the previous versions of gridded population estimates for NGA (v1.0, 
1.1, 1.2, 2.0, and 2.1) and other previous WorldPop data products. The current mastergrid 
is based on the CIESIN settlement data extents that is aligned with the new WorldPop 
Global 2 mastergid for consistency that will be used for any future demographic maps by 
WorldPop.  
 
We used the Large Scale International Boundaries (LSIB) national boundary for Nigeria. 
Because the extent of the CIESIN settlement layer contains a few kilometres buffer 
around the national boundary, it is thus slightly larger than the LSIB Nigeria boundary. 
There are 1024 settled pixels that were cut-off along the national boundary from the 
CIESIN settled raster. Furthermore, there are two Wards where the CIESIN settled raster 
does not show settled pixels, and therefore the total estimated population of the wards is      
zero. These wards are Okpokwu, in Obi LGA (Local Government Areas) of Benue state; 
and Akpankanya, in Bakassi LGA of Cross River state. 
 
 
SOURCE DATA 
The key datasets used to produce the modelled population estimates are: 
  
NMEP Data 
The 2022-23 NMEP data used for the population modelling was malaria bednet campaign 
data that covered nine states (see details in Table 1). The NMEP data provided 
information on the number of bednets that were issued per household as well as count of 
people living in each household. The year of the data collection as well as the average 
people per household for the nine states are listed in Table 1. 
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Table 1: Average people per household 
States Year Average people per household 
Adamawa 2023 5.69 
Delta 2022 5.27 
Kaduna 2022 4.99 
Kano 2022 5.68 
Katsina 2022 5.55 
Kwara 2023 6.08 
Niger 2022 5.02 
Osun 2023 5.57 
Taraba 2022 5.10 

Source: NMEP, 2022 – 2023. 
 
Geographic coordinates of the households were provided, but the datasets were 
anonymised, cleaned and aggregated at the ward level to overcome potential spatial 
inaccuracies related to the spatial precision of the household points on one hand, and 
achieve the granularity required for more accurate estimates, on the other hand. The 
NMEP data assumes complete enumeration of the individuals living in each of the states. 
However, exploratory preliminary analysis carried out on the NMEP data indicated that 
there were missing household points in some states, as well as household points with 
coordinates outside their respective states.      As part of data cleaning processes, 
household points that fell outside their respective state and wards that showed potential 
spatial anomalies were excluded from the analysis to avoid biases and inflation of the 
input population data.  
 
Settlement Data  
The settlement data was provided by CIESIN in the form of raster files (CIESIN, 2024) 
with a reference year of 2024. We obtained three different settlement products, namely           
(i) building area, which indicates the area of the buildings whose centroids are within a 
grid cell; (ii) building count, which is the number of buildings within a given cell; and (iii) 
probability of settlement, which gives a probability value of a grid cell to be settled. 
Following preliminary modelling and analyses using the three gridded layers obtained 
from CIESIN, the building count settlement layer was selected as the best layer that best 
described population density and distribution in the context of Nigeria. Please note that 
the use of either settled area or building count in defining population density is often 
context specific.  
 
Geospatial Covariates  
A wide variety of other geospatial covariates, which are related to population density and 
distribution were considered for the statistical modelling. These geospatial covariates 
include land use and land cover data, climate variables such as temperature and rainfall, 
physical features and infrastructure such as roads and schools, and conflict data (Woods 
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et al. 2024). All continuous geospatial covariates were scaled using z-score by  dividing 
the difference between the covariate value 𝑥! and the mean 𝑥! 	by the corresponding 
standard deviation 𝜎", i.e., 𝑥!

($%&'()) = (𝑥! − 𝑥!)/𝜎". This ensures that the regression 
coefficients of the continuous geospatial covariates which were obtained using different 
units of measurements are comparable. Population model covariates were selected using 
a generalized linear model (GLM) – based stepwise selection method (McCullagh and 
Nelder, 1989). The selected covariates were further accessed for multi-collinearity and 
statistical significance. Eventually, of the 55 geospatial covariates initially tested, 12 were 
retained as the best fit covariates with variance inflation factor (VIF) of less than 5. 
However, further model and prediction checks led to the retaining of the final six (6) 
covariates described in Table 2.  
 
Table 2. List of the finally selected geospatial covariates for the final model training. 

Description Source Resolution URL/DOI 
Distance to inland 
water ESA CCI Land Cover 

v2.0.7 & v2.1.1 
100m  

 DOI:10.5258/SOTON/WP00772 
Distance to cropland, 
natural vegetation  

ESA CCI Land Cover 
v2.0.7 & v2.1.1 

100m  
 DOI:10.5258/SOTON/WP00772 

Annual average 
precipitation 

 TerraClimate 100m  
 DOI:10.5258/SOTON/WP00772 

Annual average 
temperature 

Terra MODIS LST 100m  
 DOI:10.5258/SOTON/WP00772 

Distance to IUCN strict 
nature reserve and 
wilderness area edges 
2015-2022 

UNEP-WCMC & 
IUCN (2023) 

100m DOI:10.5258/SOTON/WP00772 

Settlement growth 
index 2005-2015 

World Settlement 
footprint 

100m https://download.geoservice.dlr.d
e/WSF_EVO/ 

Notes: ESA: European Space Agency, CCI: Climate Change Initiative, MODIS: Moderate Resolution Image 
Spectroradiometer, LST: Land Surface Temperature, UNEP: United Nation Environmental Program, WCMC: World 
Conservation Monitoring Centre, IUCN: International Union for Conservation of Nature 
 
 
UN WPP projection 
We used the median July 2025 United Nations World Population Projection      (UN WPP)      
for Nigeria (237,527,782) to scale the bottom-up population model results 
(https://population.un.org/wpp/downloads?folder=Standard%20Projections&group=Population).  
 
Age-Sex Proportions 
We used the National Population Commission (NPC) state      population projections 
dataset by age and sex (NPC, 2020) to calculate the age-sex proportions for Nigeria. The 
latest available year was 2022. 

https://population.un.org/wpp/downloads?folder=Standard%20Projections&group=Population
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LSIB national boundary 
We used the Large Scale International Boundaries (LSIB) dataset by the U.S. 
Department of State to define the national boundary of Nigeria before the scaling was 
applied (https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/home).  
 
 
METHODS OVERVIEW 
The key steps of our approach were as follows: 

● Data collation, preparation, exploratory analyses and data cleaning. This includes 
summarizing the household sizes from the NMEP dataset to get the total 
population at the ward level. 

● Geospatial covariates were subjected to robust covariate selection for model 
training and parameter estimation. 

● Development of robust Bayesian hierarchical statistical models implemented 
within the integrated nested Laplace approximation techniques in conjunction with 
the stochastic partial differential equations strategies (INLA-SPDE; Rue et al, 
2009; Lindgren et al. 2011). These were used in training model parameters.  

● Population estimates were predicted at grid cell level using the corresponding grid 
cell values of the covariates of the best fit model produced using the training data 
sets. 

● The modelled population estimates were scaled to the UN WPP median July 2025 
projection      

● The total scaled population is disaggregated to age and sex classes using the NPC 
2022 subnational projections. 

Statistical Modelling  

All data processing, and statistical modelling and analyses were carried out using R 
version 4.4.2 (R Core Team, 2023) with the Bayesian hierarchical modelling implemented 
using INLA package version ‘24.12.11’ (Rue et al. 2009).  Modelled estimates of 
population were produced using the of bottom-up population modelling framework 
(Wardop et al., 2018) which have been implemented using Markov chain Monte Carlo 
(MCMC) strategies (Leasure et al., 2020; Boo et al. 2022 ; Darin et al.,2022) as well as 
the optimised INLA-SPDE schemes recently used to produce small area population 
estimates for Papua New Guinea (WorldPop and NSO PNG, 2022; Nnanatu et al., 
2025a), Cameroon (Nnanatu et al. 2022; Nnanatu et al.,2025b) and the Democratic 
Republic of Congo (e.g., Nnanatu et al., 2024).  
Overall, there are four (4) key steps involved in the statistical modelling processes utilised 
here (Figure 1).  

https://geodata.state.gov/geonetwork/srv/eng/catalog.search#/home
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Figure 1. INLA-SPDE based small area population modelling and estimation workflow. 
 
The first step involved data collation from the various sources including the input 
population data from NMEP, the human settlement data from CIESIN and a stack of 
geospatial covariates from WorldPop and other sources. These datasets were rigorously 
explored, cleaned and prepared for statistical modelling. The exploratory analyses 
included checks on the distribution of the datasets as well as for anomaly/outlier detection 
across all the input datasets. As part of the data cleaning processes, the NMEP household 
points data was converted into a raster file using the same spatial extents as the CIESIN 
settlement data at 100m-by-100m resolution. This provided a robust approach for the 
detection of inconsistent and unrealistic values within the datasets. Input NMEP 
population data was available for only 2,589 (~28%) wards from 9 states. A total of 477 
wards out of 2,589, had significantly higher population counts compared to the estimated 
number of buildings, and were therefore excluded (dropped) from the modelling                               
 
In the second step, preliminary models were tested to identify the best predictors 
(geospatial covariates) of population density using GLM-based stepwise regression with 
‘both’ forward and backward selection algorithms. Only statistically significant covariates 
with a variance inflation factor (VIF) of less than 5 were retained and used within the INLA-
SPDE-based Bayesian hierarchical regression modelling. An additional layer of model 
selection was carried out after incorporating random effects (e.g., settlement type, spatial 
autocorrelation and spatially independent) to the models in the third step.  
 
Model selection for the Bayesian hierarchical regression modelling relied on the deviance 
information criterion (DIC) values while the selected model predictive ability was 
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examined using the mean absolute error (MAE), the root mean square error (RMSE) and 
the correlation coefficient (CC). Smaller values of DIC, MAE and RMSE indicate better fit 
and predictive ability while larger values of CC indicate better predictive ability. These 
model performance metrics were also used within k-fold cross-validation where the data 
was first divided into two with the model parameters trained with 80% of the data while 
the remaining 20% was used as a test to predict population density. This was repeated 
10 times (10-fold) whilst ensuring that none of the test samples was repeated. The primary 
aim of the cross-validation is to test how well the best fit model parameters were able to 
predict population outside the observed locations.  To more accurately capture the 
performance of the model, we carried out in-sample and out-of-sample cross validations. 
In the in-sample cross-validation, all the data points were used in the training set but 20% 
of the data points were used as a test set to predict their population density. Whereas in 
the out-of-sample cross validation, the 20% test set was excluded completely from the 
80% training set.  
 
Finally, further posterior inference and grid cell prediction are carried out in the fourth 
step. The prediction at the grid cell uses the model parameters of the best fit training set 
model to predict population counts at 100m-by-100m grid cells across Nigeria using the 
corresponding grid cell values of the geospatial covariates and the building counts. The 
predicted population counts are then further disaggregated by age and sex groups using 
Nigerian age-sex proportion table from the NPC (NPC, 2020). 
 
Model Specification 
In general, the population count 𝑝𝑜𝑝+ at a given (ideally geolocated) area unit is assumed 
to be Poisson-distributed, such that 𝑝𝑜𝑝+ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆+). However, in the context of small 
area population modelling (Leasure et al., 2020; Boo et al. 2022 ; Darin et al.,2022; 
Nnanatu et al., 2022; Nnanatu et al., 2025a; Nnanatu et al., 2025b; Nnanatu et al., 2024), 
a key assumption of the Poisson model which requires both mean and variance to be 
equal is often violated due to overdispersion in which case 𝑚𝑒𝑎𝑛(𝑝𝑜𝑝+) ≠ 𝑣𝑎𝑟(𝑝𝑜𝑝+). For 
this reason, the mean parameter 𝜆+ is usually expressed in terms of population density to 
account for spatial aggregation error (e.g., Leasure et al 2020, Nnanatu et al 2022). 
Typically, the mean parameter is given as  𝜆+ = 𝜇+𝐵+, where 𝐵+ is the total number of 
buildings within ward 𝑖 and 

																									𝐷+ =
𝑝𝑜𝑝+
𝐵+

																																											(1)	

is the population density defined as the number of people per settlement building with 
expected value equals 𝜇+, and which follows Gamma distribution given by  

																						𝐷+ ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼,, 𝛼-)																											(2)	
where 𝛼, and 𝛼- are the shape and rate parameters with mean  𝜇+ = 𝛼,/𝛼- and variance 
𝜙 = 𝛼,/𝛼--, respectively. The predicted population density  𝐷@+ for ward 𝑖 is given by  
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																									𝐷@+ 	=𝑒𝑥𝑝 𝑒𝑥𝑝	(𝑋+.𝛽 + 𝑍+.𝛾 + 𝜉(𝑠+) + 𝜁+)											(3)												 
 
where 𝑋 and 𝑍 are the design matrices of fixed effect covariates (e.g., average annual 
precipitation, average annual temperature, distance to crop land) and random effects 
(e.g., settlement type, state, LGA), respectively. Also, the terms 𝛽 ∈ 𝑅(𝐾×1) and 𝛾 are the 
vectors of fixed effects regression parameters and random effects variances, 
respectively. While the terms 𝜉(𝑠+) and  𝜁+ are the spatially varying and spatially 
independent random effects accounting for spatial autocorrelations and dissimilarities 
between observations, respectively. Here, 𝜉(𝑠+) at spatial location 𝑠+ follows a Gaussian 
Random Field (GRF) 

																														𝜉(𝑠+) ∼ 𝐺𝑅𝐹(0, 𝛴)																										(4)	
where 𝛴 is a dense covariance matrix. Here, we evaluated 𝛴 using the INLA-SPDE 
approach via Gaussian Markov Random Field (GMRF) and gained computational speed 
by first discretising the continuous spatial domain using mesh (Lindgren et al., 2011). 
Additionally, the term 𝜁+ is a zero-mean Gaussian noise specified by 

																														𝜁+ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙P0, 𝜎2-Q																						(5)	
where 𝜎𝜁- > 0 is a variance parameter. Then, finally, the predicted population counts at 
grid cell 𝑔 is obtained as  

																																𝑝𝑜𝑝U 3 = 𝐷@3 × 𝐵3																														(6)	
where 𝐷@3 is the predicted population density in gride cell 𝑔 using the corresponding grid 
cell covariate values and the model parameter values based on equation (3). Also, 𝐵3 is 
the corresponding building count for grid cell 𝑔	(𝑔 = 1,… , 𝐺). The prediction covariates 
included 𝐺(= 7,185,917	) grid cells at 100m-by-100m resolution, and population counts 
were predicted in each grid cell that contains values of building counts.  
 
All models were implemented within the integrated nested Laplace approximation (INLA; 
Rue et al, 2009) in conjunction with the stochastic partial differential equation (SPDE 
Lindgren et al, 2011) frameworks. It allowed us to gain more computational advantage by 
discretizing the entire Nigerian continuous space into a Gaussian Markov random fields 
(GMRF) process. To ensure flexibility and better capture local variabilities within the data, 
we used the Penalized Complexity (PC) (Simpson et al., 2017) on the standard deviation 
parameters throughout, such that a small probability of 0.01 is assigned for the standard 
deviation 𝜎 being greater than 1, that is, 𝑃(𝜎 > 1) = 0.01.   
 
Model fit checks and model validation 
Table 3 and Table 4 show the model fit metrics of the top three competing models and 
the cross-validation performance metrics of the best fit model, respectively. Table 3 
provides the specifications and the DIC values of these nested models. It shows that 
Model 3 which accounted for only the spatially varying (𝑠𝑝𝑎𝑡𝑖𝑎𝑙) and spatially independent 
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(𝐼𝐼𝐷) random effects (ward) along with the geospatial covariates provided the best fit with 
the lowest DIC value indicating that the variabilities across the states did not significantly 
influence population density in Nigeria. Instead, the spatial location of the wards matters, 
and the approach enabled us to borrow strength from neighboring wards/grid cells to 
predict population in nearby wards/grid cells with no population observations.   
 

Table 3. Model fit metrics of the top 3 competing models 
Model Specification DIC 

Model 1 𝑙𝑜𝑔(𝜇$) 	∼ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝑠𝑡𝑎𝑡𝑒	 6874.722 

Model 2 𝑙𝑜𝑔(𝜇$) 	∼ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑠𝑡𝑎𝑡𝑒	 7493.952 

Model 3 𝑙𝑜𝑔(𝜇$) 	∼ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝐼𝐼𝐷	 2590.333 

Note. DIC – Deviance information criterion (the smaller, the better). The best fit model is Model 3 (highlighted in light 
green).  
 
Additionally, as shown in Table 4, the 10-fold cross validation carried out further indicate 
good fit and high predictive ability of the best fit model at both in-sample and out-of-
sample test versus training set samples.  The values of the MAE and RMSE were close 
with high correlation coefficients of more than 80% in both scenarios.   
 

Table 4. Model fit metrics for cross-validations 

Data MAE RMSE CC (%) 

In-Sample 5212.302 9701.98 91.31 

Out-of-Sample 7558.738 
 

10625.97 
 

84.56 
 

Note. MAE – Mean Absolute Error; RMSE – Root Mean Square Error; CC – Correlation Coefficient. 
 
 

 
The estimated total population using the bottom-up method above was 237,345,980 (95% 
CI; lower = 233,596,990 0.9131219; upper = 243,655,702).  
  
Scaling 
The scaling process involved normalising [0,1] the model-based predicted population 
counts to get their relative distribution per grid cell. Then, the normalised values were 
multiplied by the UN population totals to adjust the modelled gridded population 
estimates, but keep the spatial distribution. Using these adjusted gridded population 
counts, the predicted population totals at the different administrative levels were also 
updated.  
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Therefore, the final results at national level are matching the median July 2025 United 
Nations World Population Projection (UN WPP) for Nigeria (237,527,782).  
 
Age-Sex disaggregation 
We used the 2022 National Population Commission (NPC) subnational population 
projections dataset by age and sex (NPC, 2020) to calculate the age-sex proportions for 
each state across Nigeria. We multiplied our gridded population estimates 
(NGA_population_v3_0_gridded.tif) by the gridded age-sex proportions to produce 
NGA_population_v3_0_agesex.zip. Subnational age/sex projections from NPC were 
only available at state-level, therefore, the grid cells within individual states have 
identical age and sex proportions.  
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