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Abstract 

This data release provides gridded population estimates (at a spatial resolution of 3 arc-

seconds, approximately 100-metre grid cells) for Kasaï Province in the Democratic 

Republic of Congo (DRC), including estimates for various age-sex groups. The project 

team utilized Pre-Distribution Registration Survey (PDRS) data from the National Malaria 

Control Programme (PNLP), which were collected during anti-malarial campaigns across 

the DRC. Due to the absence of recent PDRS data for Kasaï, we used data from the 

neighboring province of Kwilu to train our model and made grid-level predictions for Kasaï, 

using geospatial covariates specific to Kasaï. The modelling was done using a Bayesian 

statistical hierarchical modelling framework. The approach facilitated simultaneous 

accounting for the multiple levels of variability within the data. It also allowed the 

quantification of uncertainties in parameter estimates. These model-based population 

estimates can be considered as most accurately representing the year 2023. Although 

the methods were robust enough to explicitly account for key random biases within the 

datasets, it is noted that systematic biases, which may arise from sources other than 

random errors within the observed data collection process, remain. 

 

These data were produced by the WorldPop Research Group at the University of 

Southampton. This work was part of the GRID3 – Phase 2 Scaling project, with funding 

from the Gates Foundation (INV-044979). Project partners included GRID3 Inc, the 

Center for Integrated Earth System Information (CIESIN) within the Columbia Climate 

School at Columbia University, and WorldPop at the University of Southampton. The final 

statistical modelling was designed, developed, and implemented by Chris Nnanatu. Data 

processing was done by Ortis Yankey with additional support from Heather Chamberlain. 

Project oversight was done by Chris Nnanatu, Attila Lazar, and Andy Tatem. The PDRS 

data from the malaria insecticide treated net (ITN) distribution campaigns were collected, 

processed, anonymised, and shared by the PNLP and its implementing partners. The 

settlement extent data was prepared and shared by CIESIN (2024). The data has been 

clipped to Grid3-CIESIN health area extent (CIESIN, 2025). 
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The authors followed rigorous procedures designed to ensure that the used data, the 

applied method and thus the results are appropriate and of reasonable quality. If users 

encounter apparent errors or misstatements, they should contact WorldPop 

at release@worldpop.org.  

 

WorldPop, University of Southampton, and their sponsors offer these data on a "where 

is, as is" basis; do not offer an express or implied warranty of any kind; do not guarantee 

the quality, applicability, accuracy, reliability or completeness of any data provided; and 

shall not be liable for incidental, consequential, or special damages arising out of the use 

of any data that they offer. These data are operational population estimates and are not 

official government statistics. 

 

RELEASE CONTENT 

1. COD_Kasai_province_population_v4.2_gridded.zip 

2. COD_Kasai_province_population_v4.2_agesex.zip 

 

LICENSE 

These data may be redistributed following the terms of a Creative Commons Attribution 

4.0 International (CC BY 4.0) license. 

 

SUGGESTED CITATION 

Nnanatu C., Yankey O., Abbott T. J., Chamberlain H., Lazar A. N., Tatem A. J. 2025. 

Bottom-up gridded population estimates for Kasaï Province in the Democratic Republic 

of Congo (2023), version 4.2. WorldPop, University of Southampton. doi: 

https://dx.doi.org/10.5258/SOTON/WP00789 

 

FILE DESCRIPTIONS 

The projection for all GIS files is the geographic coordinate system WGS84 (World 

Geodetic System 1984). Kindly note that while this data represents population counts, 

values contain decimals, i.e. fractions of people. This is because both the input population 

data and age-sex proportions contain decimals. For this reason, it is advised to aggregate 

the rasters at a coarser scale. For example, if four grid cells next to each other have 

values of 0.25 this indicates that there is 1 person somewhere in those four grid cells. 

 

COD_Kasai_province_population_v4_2_gridded.tif 

This geotiff raster contains estimates of total population size for each approximately 100-

metre grid cell (0.0008333 decimal degrees grid) across Kasaï Province. The values are 

the mean of the posterior probability distribution for the predicted population size in each 

grid cell. Grid cells with values of 0 represent areas that were mapped as unsettled 

according to building footprints data. 

mailto:release@worldpop.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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COD_Kasai_province_population_v4_2_lower.tif 

This geotiff raster contains estimates of the lower bound credible interval (2.5% CI) for 

each grid cell across Kasaï Province. The values are the 2.5% posterior probability 

distribution of the predicted population size in each grid cell. The lower bound estimates 

cannot be summed across grid cells to produce a lower credible interval measure for a 

multi-cell area. Grid cells with values of 0 represent areas that were mapped as unsettled 

according to building footprints data 

  

COD_Kasai_province_population_v4_2_upper.tif 

This geotiff raster contains estimates of the upper bound credible interval (97.5% CI) for 

each grid cell across Kasaï Province. The values are the 97.5% posterior probability 

distribution for the predicted population size in each grid cell. The upper bound estimates 

cannot be summed across grid cells to produce an upper bound credible interval measure 

for a multi-cell area. Grid cells with values of 0 represent areas that were mapped as 

unsettled according to building footprints data.  

 

COD_Kasai_province_population_v4_2_agesex.zip 

This zip file contains 40 geotiff rasters at a spatial resolution of 3 arc-seconds 

(approximately 100-metre grid cells). Each raster provides gridded population estimates 

for an age-sex group per grid cell across Kasaï. We provide 36 rasters for the commonly 

reported age-sex groupings of sequential age classes for males and females separately. 

These are labelled with either an “m”(male) or an “f” (female) followed by the number of 

the first year of the age class represented by the data. “f0” and “m0” are population counts 

of under 1-year olds for females and males, respectively. “f1” and “m1” are population 

counts of 1- to 4-year-olds for females and males, respectively. Over 4 years old, the age 

groups are in five-year bins labelled with a “5”, “10”, etc. Eighty-year-olds and over are 

represented by the groups “f80” and “m80”. We provide four additional rasters that 

represent demographic groups often targeted by programmes and interventions. These 

are “under1” (all females and males under the age of 1), “under5” (all females and males 

under the age of 5), “under15” (all females and males under the age of 15) and “f15_49” 

(all females between the ages of 15 and 49, inclusive). These data were produced using 

age-sex proportions from the 2024 WorldPop Global subnational population pyramids for 

the DRC. The age-sex proportions are available per a given province. Hence we applied 

the age-sex proportions for Kasaï to the gridded population estimates 

(COD_Kasai_province_population_v4_2_gridded.tif) to allocate the population to the 

different age-sex classes. 
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RELEASE HISTORY 

Version 4.2 (13 March 2025) 

• This is a major update the data for Kasaï Province [doi: 

10.5258/SOTON/WP00789] (as described in this release statement).  

• This data is released as part of a collection of population estimates for 11 DRC 

provinces: https://wopr.worldpop.org/?COD/Population/v4.2  

 

Version 3.0 (4 January 2022) [doi:10.5258/SOTON/WP00720]  

• Original release of the population dataset for the Haut-Katanga, Haut-Lomami, 

Ituri, Kasaï, KasaïOriental, Lomami and Sud-Kivu provinces. 

 

 

ASSUMPTIONS AND LIMITATIONS 

 

The gridded population data for Kasaï were generated using PDRS data collected in 2023 

for Kwilu. Due to the lack of recent PDRS data for Kasaï, we utilized data from the 

neighboring Province of Kwilu to train our model and made grid-level predictions for Kasaï 

using geospatial covariates specific to Kasaï. Although Kasaï and Kwilu are adjacent, 

their population distributions may differ significantly, potentially introducing variability in 

our model’s accuracy. 

 

These population estimates most likely represent 2023, but because of the different ages 

of the input data used to build the model, a precise time point cannot be allocated. The 

PDRS data for Kwilu that was used as the response variable was collected in 2023, while 

geospatial covariates data were collected from different time periods between 2020 and 

2023. Similarly, the CIESIN settlement layers were produced in 2024. The inherent 

heterogeneity in the temporal alignment of these datasets used in the modelling may 

introduce uncertainties and potential inaccuracies in the modelling process. 

  

Data on population per household (household size), collected during ITN distribution 

campaigns, was aggregated to calculate total population count for a given spatial unit. 

Given that the number of ITNs received by a household is proportional to the household 

size, there is an incentive for respondents to potentially inflate counts of population per 

household. The presence of inflated household sizes in the input population data would 

likely introduce systematic biases in the modelled estimates. 

 

The statistical model produced unrealistically high population estimates for some grid 

cells relative to the number of building counts. These grid cells are mostly in rural and 

remote areas and include those with the following coordinates:   

https://wopr.worldpop.org/?COD/Population/v4.2
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 (21°4'2.173" E, 6°52'25.928" S), (20°8'49.488" E, 5°35'2.1" S), and (21°24'55.167" E, 

6°12'31.064" S). These seemingly overinflated population numbers might be a function 

of residual errors not accounted for by the model, and it may also be that the PNLP data 

used as input in these locations could be highly inflated.  

The model does not directly account for external factors such as migration, 

displacement, or sudden demographic changes, which could significantly influence 

population dynamics. However, the use of recently collected demographic and 

settlement datasets which capture recent changes in the population distribution/density 

offers extra layer of advantage. Nevertheless, the estimates may not fully reflect 

dynamic population shifts occurring beyond the scope of the input data. 

 

Grid cell alignment is based on a mastergrid. Note that this version's (v4.2) mastergrid 

aligns with version 4.1 but does not align with previous DRC gridded population layers, 

namely versions v1.0, v2.0, v3.0. We updated the mastergrid in 2024 to ensure grid cell 

alignment across all new WorldPop data products. 

 

SOURCE DATA 

The key datasets used to produce the modelled population estimates are: 

  

PDRS Data 

The input population dataset used for the population modelling for Kasaï Province was 

the PDRS malaria bednet campaign data collected for Kwilu Province. The PDRS 

dataset, which was collected in 2023, provided detailed information on a given household 

for which a bednet was issued, such as the household size, the number of bednets issued, 

the number of children in the household, the number of males, and the number of females, 

among others.  

Although the malaria bednet campaign was designed to distribute bednet to every 

household within the province, a preliminary exploratory data analysis carried out on the 

PDRS data indicated that some households were not visited during the campaign, while 

others were not completely covered.  

The GPS points of all households within the province were provided in the PDRS data. 

We implemented population modelling for small spatial units, utilising unofficial 

boundaries similar to census Enumeration Areas ("pre-EAs"; Qader et al., 2024). The 

household-level data on population counts was spatially aggregated to these spatial units, 

by summing the household size data for all GPS points within each pre-EA boundary.  

 

Settlement Data 

Settlement data was provided by CIESIN in the form of raster files (CIESIN, 2024). We 

obtained two different settlement products, namely (i) settlement area, which indicates 

the area of all buildings whose centroid falls within a given cell, and (ii) building count, 
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which is the number of building centroids within a given cell. Each of these settlement 

layers was used in separate analyses together with the observed population count and 

ancillary geospatial data in robust statistical modeling. After using each settlement layer 

in the analysis, we compared model metrics and the gridded population layer from both 

layers. Settlement building count provided more realistic population numbers at the 

gridcell level and hence was retained for the final population predictions. 

 

Geospatial Covariates 

A wide variety of geospatial covariates, which are related to population distribution, were 

considered in the modelling. These geospatial covariates include land uses and land 

cover data, climate variables such as temperature and rainfall, physical features and 

infrastructure such as roads and schools, and conflict data. Population model covariates 

were selected using a generalized linear model (GLM) – based stepwise selection 

method. The selected covariates were further accessed for multi-collinearity and 

statistical significance. Eventually, of the 85 geospatial covariates initially tested, 10 were 

retained as the best fit covariates with variance inflation factor (VIF) of less than 5. The 

descriptions of these final geospatial covariates are presented in Table 1 below. 

 

Table 1. Selected geospatial covariates for the modelling. 

Description Source Link/Reference 

Slope SRTM https://www.viewfinderpanora

mas.org/dem3.html 

Euclidean distance to Grid3 health facilities GRID3 https://data.grid3.org/datasets 

/8a8d510bd94042128643480

10112212b_0/explore 

Euclidean distance to cropland/natural 

vegetation landcover 2020 

WorldPop Woods et al (2024) 

Dry Matter Productivity Copernicus https://land.copernicus.eu/glo

bal/products/ba 

Euclidean distance to OSM waterbodies 

 

OSM 

 

https://www.openstreetmap.o

rg 

Euclidean distance to hospitals facilities WorldPop Woods et al (2024) 

Mean – Normalized vegetation Index 2021 Copernicus  https://land.copernicus.eu/gl

obal/products/ba 

Euclidean distance to OSM local Roads 

2023 

 

OSM 

 

https://www.openstreetmap.o

rg 

Euclidean distance to tree covers 2020 WorldPop Woods et al (2024) 

Coefficient of variation – Microsoft building 

length 

Microsoft https://github.com/microsoft/R

oadDetections 

https://github.com/microsoft/RoadDetections
https://github.com/microsoft/RoadDetections
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Age-Sex Proportions 

We used the 2024 WorldPop Global subnational population pyramids (Bondarenko et al 

2025) to calculate the age-sex proportions for Kasaï. We multiplied our gridded 

population estimates (COD_Kasaï_province_population_v4_2_gridded.tif) by the age-

sex proportions(grouping) to produce 

COD_Kasaï_province_population_v4.2_agesex.zip. 

 

 

METHODS OVERVIEW 

The key steps of our approach were as follows: 

 

• Cleaning and summarizing the household sizes from the PDRS dataset to get the 

total population at the pre- enumeration area (pre-EA) level (Qader at al. 2024). 

PDRS data points with household sizes above 500 people per household signalled 

potential outliers and as such we imputed these household sizes with the median 

household size. Similarly, PDRS data point with household sizes of 0 were also 

imputed using the median household size 

• Geospatial covariates were subjected to robust covariate selection for model 

training and parameter estimation. 

• We developed a hierarchical Bayesian statistical model using the INLA-SPDE 

approach (Lindgren et al. 2011) to fit and predict the population count. 

• Population estimates were predicted at grid cell level using the grid cell values of 

the covariates selected at the model training level. 

Statistical Modelling 

We approached the population modelling using two complementary methods. The first 

method assumes that the PDRS data provides unbiased estimates of the population 

counts and does not require any form of bias correction (here after known as unscaled 

model approach). Whereas the second method acknowledges the fact that the PDRS 

data, which was our population model’s primary input, could be systematically biased and 

requires bias adjustment to avoid under- or over-estimation of population counts. 

Specifically, for the second method, we took advantage of an existing recent Microcensus 

data (Flowminder Foundation et. al., 2021; UCLA and Kinshasa School of Public Health, 

2018) that overlapped with the PDRS data at cluster unit levels across six provinces in 

the DRC (Kongo Central, Kinshasa, Kwilu, Haut-Lomami, Sud-Kivu, and Ituri). Thus, the 

second approach which is also known as the scaled model approach uses a scaling factor 

to adjust for the potential bias in the population count. Further details of the models’ 

specifications are provided below: 
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Unscaled Model Approach 

In general, within the context of bottom-up population modelling (Leasure et al. 2022, Boo 

et al., 2022; Darin et al., 2022,  Nnanatu et al. 2022), the observed population count at 

area unit k, yk, is a Poisson distributed random variable with mean parameter λk = d̅kBk 

where k is the estimation unit (e.g., enumeration area), while d̅k and Bk are the mean 

parameter of the corresponding population density and the number of buildings/settled 

area, respectively. That is,  

                                                  yk ∼ Poisson(d̅kBk)                        (1) 

Then, the transformed mean population density d̅k is assumed to be linked to a set of 

geospatial covariates with log-link function: 

𝑙𝑜𝑔(d̅k) = μ + ∑ βjxkj

J

j=1

+ ∑ fl(zkl)

L

l=1

               (2) 

where μ is the intercept parameter, 𝛃 = (β1, … βJ) is a vector of fixed effects coefficients 

of the (x1, … , xJ) geospatial covariates; fl(. ) is a function of L random effects covariates 

including those that capture variability in the population estimates due to settlement type, 

cluster location and spatial autocorrelations. The population density (defined as people 

per building or people per settled area) is assumed to be a Gamma distributed random 

variable with parameters α and γ with mean and variance given by d̅k = α/γ and σd
2 =

α/γ2, respectively.  

The inclusion of spatial autocorrelation requires the use of computationally efficient 

statistical modelling software. Thus, the integrated nested Laplace approximation (INLA; 

Rue et al 2009; Lindgren et al., 2011) is used via the R-INLA statistical package. Note 

that the method described above predicts population count at regular grid cells using the 

parameter values trained at the cluster/pre-EA level by calculating the predicted grid-cell 

level population density as  

                       d̂g = exp (μ̂ + ∑ β̂jxgj

J

j=1

+ ∑ f̂l (zgl
)

L

l=1

)                 (3) 

where {𝑥𝑔}
𝑔=1

𝐺
 are the corresponding grid cell level values of the geospatial covariates 

used in training the model at the cluster level, so that the overall predicted population 

count across the G 100m by 100m grid cells is given by  

                                   pop̂ = ∑ Bgd̂g

G

g=1

                                                (4) 
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where Bg is the corresponding building count or the size of settled area in grid g. We 

assumed default INLA priors for each of the parameter estimates which have been found 

to be robust.  

Scaled Model Approach 

For the second method, a scale factor is calculated for each of the overlapping clusters 

across the 6 provinces according to equation (5): 

                                 ck =
mk

pk
                                 (5) 

where ck, mk and pk are the scale/adjustment factor, Microcensus population count, and 

PDRS population count for cluster k, respectively. That is, when ck < 1, the PDRS 

overestimates the population count by 100(1 − ck)%, and underestimates by 

100(ck − 1)% when ck > 1.  Thus, the first approach described above assumes that the 

PDRS data is as good as the Microcensus data, that is, ck = 1 (or mk = pk).  

We predicted estimates of the scale factor ck at locations where Microcensus and PDRS 

datasets did not overlap using model parameters trained with the scale factor data 𝐜 =

(c1, … , cn)T obtained at the n Microcensus-PDRS overlapping clusters. A similar approach 

was also adopted to predict the scale factors at grid cell levels to better capture local 

variations. To do this, first we assume that the scale factors are realisations from Gamma 

distributed random variables, that is, 

                                               Ck ∼ Gamma(αc, γc)                            (6) 

with mean and variance given by  c̅k = αc/γc and  σc
2 = αc/γc

2, respectively. So that the 

mean parameter is linked to a set of geospatial covariates as well as spatial 

autocorrelations and other random effects through a log-link function defined in equation 

(7): 

                  𝑙𝑜𝑔(c̅k) = μ + ∑ βjxkj

J

j=1

+ ∑ fl(zkl)

L

l=1

                           (7) 

where μ is the intercept parameter, 𝛃 = (β1, … βJ) is a vector of fixed effects coefficients 

of the (x1, … , xJ) geospatial covariates (See Table 1 for the description of the final 

covariates selected through stepwise regression); fl(. ) is a function of L random effects 

covariates including those that capture variability in the population estimates due to 

settlement type, cluster location and spatial autocorrelations. Then, grid cell predictions 

of the scale factors ĉg are obtained using the grid cell values of the geospatial covariates 

and the estimates of the model parameters μ̂, β̂ and f̂ trained at the cluster level:  



 
 

10 

                       ĉg = exp (μ̂ + ∑ β̂jxgj

J

j=1

+ ∑ f̂l (zgl
)

L

l=1

)            (8) 

Finally, the grid cell level scaled population estimates are obtained as  

                                      pop̂g
(scaled)

= ĉg × pop̂g                              (9) 

where pop̂g = Bg d̂g is the corresponding unscaled grid cell level population estimate.  

In this study, we approached the population modelling through five key steps: 

•Fit Bayesian Hierarchical regression model to Kwilu and Kasaï data combined to predict 

Kasaï input population data based on their shared boundary and settlement types 

characteristics only (random intercept geostatistical model adjusting for settlement type 

and spatial autocorrelation). 

oThis was implemented within INLA by joining both datasets together and setting PNLP 

data values of Kasaï to NA 

•Train geostatistical model to predict scale factor across the entire DRC provinces. 

oThe scale factor is defined as the ratio of the PNLP versus Microcensus observations 

obtained across all overlapping clusters across DRC provinces. 

oIt is used as a correction factor for potentially systematically biased PNLP observations. 

•Predict scale factor values for Kasaï Province using the trained scale factor model 

parameters. 

•Apply scaling to the predicted input PNLP-based population data for Kasaï by multiplying 

it with the corresponding predicted scale factors. This yields a scaled input data for Kasaï, 

that is, bias corrected input data. 

•Train Bayesian Hierarchical regression model using population density based on the 

scaled input data for Kasaï input data with a set of best fit geospatial covariates.  

•Finally, use the trained model parameters to predict population numbers at the grid cells.   

The novelty of the modelling approach utilised here is that it allows for the adjustment of 

potential systematic bias in the input population data within a coherent Bayesian 

hierarchical population modelling framework while at the same time adjusting for spatial 

autocorrelation within the observed data. 
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All data processing and analysis was carried out using R (v.4.2.2) (R Core Team, 2023) 

and INLA (v 22.05.07) (Rue et al. 2009). The concept of bottom-up population modelling 

for estimating population in the absence of recent census data was described by Leasure 

et al. (2020). Approaches similar to the one used here for Kasaï have been carried out 

for Papua New Guinea (WorldPop and NSO PNG, 2022) and Cameroun (Nnanatu et al, 

2022). 
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