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Modelled population estimates provide small area population data that can support governance, equitable resource allocation, and delivery of aid, especially in

countries where census data are outdated or incomplete. Bottom-up population modelling approaches [e.g. 1-2] use advanced statistical techniques to combine

sample demographic data (counts of people), with geospatial covariates and satellite-derived settlement data, to produce high-resolution population estimates

(usually at ~100m regular grid cells). However, while the existing methods have mostly implied spatial dependence of the observations through the geospatial

covariates, the latent effects of the potential spatial autocorrelation on the observed data is still not very clear. Here, we produced small area estimates of

population in Cameroon (along with uncertainty metrics) using the integrated nested Laplace approximation/stochastic partial differential equation (INLA/SPDE)

framework [3], which allowed us to explicitly integrate spatial autocorrelation with five nationally representative household listing datasets within a bottom-up

population modelling framework. Our methodology represents an important development within population modelling contexts and has facilitated the

development of several other INLA/SPDE-based population modelling techniques developed to address different data challenges across the World.

DATA:
- Demographic data: Five geolocated cluster household listing 

datasets from nationally-representative household surveys
- Geospatial covariates: E.g., Nighttime lights, distance to local roads, 

distance to market places
- Settlement data: Building footprints, settlement type classifications

METHOD:
 The datasets were collated,  processed and cleaned.
 Geospatial covariates were stacked and tested for model fit.
 Spatial autocorrelation was implied through the triangulation of the entire country 

using non-convex hull mesh. 
 Trained model parameters were used to make predictions at 100x100m grid cells.

Sample MAE RMSE Absolute 

BIAS

CORR

In-Sample 58.745 82.527 3.997 0.997

Out-of-

sample

63.327 93.278 3.212 0.996

Total Lower bound Upper bound

28,663,487 27,147,814 30,612,947

Table 1. Model Cross-Validation

Table 2. Estimated total national population

RESULTS:
 Model cross-validation using both in-sample and out-

of-sample cross-validation techniques indicated good 
predictive ability for the best fit model (Table 1 & 
Figure 2). 

 There is a probability of 95% that the ‘true’ total 
national population lies between 27.15M and 30.61M 
(Table 2)

 The datasets are now published and freely available 
in the WorldPop data repository.
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Figure 1. Modelling workflow. WAIC – Widely Acceptable Information Criterion; CPO – Conditional Probability Ordinate; MAE – Mean 
Absolute Error; RMSE – Root Mean Square Error  
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