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This document outlines in brief how WorldPop’s Global 2015-2030 gridded demographic datasets were 

produced and some limitations and use recommendations. The dataset currently represents an alpha 

version (R2025A) public release product and may change over the coming year as improvements are 

made. The construction of these data involve the assembly of millions of pieces of data, making it 

impossible to check every grid square estimate and we welcome feedback from the community where 

errors or anomalies are seen. This document will also remain live at present, with changes documented 

as they are made to the datasets, and new summaries or updates added as and when they occur. 

Updated versions of this document will be reflected in the version number. 

These data are an open-access set of high-resolution gridded population datasets for 242 countries 

globally, providing age and sex-structured annual estimates for the period 2015-2030. These new 

2015-2030 global demographic datasets exhibit marked improvements on the global datasets 

constructed in 2018 that represented the 2000-2020 period. Notably, refinements include the 

incorporation of the latest circa-2020 round of censuses, an updated and expanded geospatial 

covariate library, a new and improved inland water mask, improved approaches to projecting 

population numbers and age-sex breakdowns, alignment of national totals with the latest UN 

estimates, in addition to updated settlement mapping and growth modelling that incorporate building 

footprints mapped from satellite imagery.  

These new global demographic datasets were constructed by WorldPop (www.worldpop.org), an 

interdisciplinary applied research programme that develops peer-reviewed research and replicable 

methods for the construction of open and high-resolution geospatial data on population distributions, 

demographics and dynamics. WorldPop produces many different forms of gridded population data, 

and readers are encouraged to review this page to be sure that these global data are the best for their 

needs before proceeding: https://www.worldpop.org/choosing-the-right-worldpop-population-data-

for-you/. 

File Descriptions 
{iso}_{gender}_{age group}_{year}_{type}_{resolution}_{release}_{version}.tif 

iso ISO-3 Country Code 

gender m = male, f = female, t = both genders 

age group 00 = age group 0 to 12 months 
01 = age group 1 to 4 years 
05 = age group 5 to 9 years 
90 = age 90 years and over 

year Year that the population represents 

type CN = Constrained 

resolution Resolution of the data (e.g. 100m = 3 arc-seconds (approximately 100m at the 
equator 

release Release 

version Version 

Example: afg_f_00_2016_CN_100m_R2025A_v1.tif – this dataset represents constrained estimates 

of total number of females of age group 0 to 12 months per grid square in Afghanistan for 2016 at 

100m resolution, release version R2025A v1. 

Inputs 
A ‘top-down’ method (https://www.worldpop.org/methods/populations/) to population 

disaggregation via a random forest (RF) dasymetric approach was implemented to construct this set of 

https://www.worldpop.org/choosing-the-right-worldpop-population-data-for-you/
https://www.worldpop.org/choosing-the-right-worldpop-population-data-for-you/


gridded population datasets (Stevens et al., 2007). This ‘top-down’ RF method involves the 

identification, gathering and harmonisation of four principle data collections, each of which is 

described below. 

Population data and administrative boundaries 
Subnational census-based and official projection population counts and age/sex breakdowns at as 

small an administrative unit level as available at the time of data assembly were collected, alongside 

matching official administrative unit boundaries for each country. Population and boundary data were 

gathered for the two most-recent census rounds (c.2010 and c.2020). Where official census-based data 

were unavailable, population data from alternative sources were adopted. Predominantly, these 

alternative data were used for countries in conflict or where censuses had not been undertaken for 

more than a decade, and were sourced from either: (i) U.S. Census Bureau subnational population 

projections, or (ii) United Nations Common Operational Datasets (CODs) on population statistics. Both 

data sources are constructed to support humanitarian relief, health, development and disaster 

planning. Users should be aware that for many resource-poor countries, WorldPop co-develops 

‘bottom-up’ gridded population estimates with governments and UN agencies, and these data may be 

more appropriate to user needs than the data outlined here – this page can help with making this 

decision: https://www.worldpop.org/choosing-the-right-worldpop-population-data-for-you/.  

Population data for each country were processed to match corresponding official digital administrative 

boundary datasets. Administrative boundary data and population were further harmonised via a 

process involving the “nesting” of administrative units; this step aggregates sub-national 

administrative units and their corresponding population counts to ensure uniformity of administrative 

unit boundaries between timepoints for each country. These data were recoded adding a “GID” 

primary key field; this field enables the datasets to be joined. 

For each country, the two timepoints of population data were interpolated and projected, providing a 

full set of annual population projections for the period 2010-2030. These projections and 

interpolations were undertaken using different types of approaches, depending on the data situation 

for each country. The projections were aligned at a national level with the estimated country totals set 

out in the 2024 Revision of the World Population Prospects produced by the Population Division of the 

Department of Economic and Social Affairs of the United Nations Secretariat (UN, 2024). Population 

data were not modelled for nine countries or territories, due to classification as uninhabited or with 

static population totals (Table 1). Full census data metadata can be accessed via: 

https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/census/global2_census_data_s

ources_R2025A_v1.xlsx. For a selection of countries, obvious inconsistencies between timepoints, 

errors in population count assignment to administrative unit counts in the c.2010 data, or substantial 

changes during inter-censal periods meant that solely the c.2020 round of population data inputs were 

selected as input for the modelling, and these are indicated in the Excel sheet. 

 

ISOAlpha Country or Territory Name 

ATF Kerguelen Islands 

BVT Bouvet Island 

CPT Clipperton Island 

HMD Heard Island and McDonald Islands 

IOT British Indian Ocean Territory 

SGS South Georgia and the Sandwich Islands 

SPR Spratly Islands 

https://www.worldpop.org/choosing-the-right-worldpop-population-data-for-you/
https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/census/global2_census_data_sources_R2025A_v1.xlsx
https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/census/global2_census_data_sources_R2025A_v1.xlsx


UMI Baker Island 

VAT Vatican City 

Table 1. Countries or territories that were not modelled due to classification as uninhabited or with 

static population totals. 

Mastergrid 
Prior to the harmonisation of covariates and national administrative unit boundaries, a base grid was 

constructed. This base grid, known as the “mastergrid”, is used for spatial alignment and resolution 

during harmonisation of all geospatial datasets used in the construction of the modelled population 

estimates. The mastergrid is constructed of a grid of 3 arc-seconds resolution (~100m at the equator) 

covering all major landmasses between 84°N and 60°S. Terrestrial areas are integrated via the 

aggregation of all land cover classes from ESA WorldCover 10m v200 (Zanaga et al., 2022) and 

conversion to 100m output resolution; coastline pixels with greater than 75% water share are omitted 

in this stage. Oceans and major inland waterbodies, such as the Black Sea and Caspian Sea, are recoded 

as NoData. 

The terrestrial surface area is further split into constituent countries using the Large Scale International 

Boundaries (LSIB) Dataset v11.3 (OGGI, 2024), which reflects U.S. Government policy on international 

boundary alignment, political recognition and dispute status. The boundaries form 41 ambiguous small 

areas which are not clearly assigned to a country. In these cases, Global Mosaiced National Boundaries 

produced by WorldPop (WorldPop, 2018), the GPWv4 National Identifier Grid (CIESIN, 2016) and 

boundaries related to the latest national census were used as source for delineation of countries. 

Southern Asia contributed the largest proportion of these small areas by sub-region. Finally, each 

country was given a unique three-digit numerical code in line with ISO-3166. 

Covariates 
Human population density is known to be highly influenced and correlated with a variety of 

environmental and physical phenomena, each known to influence the spatial distribution of 

population presence and densities (Nieves et al., 2017, Dobson et al., 2000, Nagle et al., 2014). A set 

of geospatial datasets representing these phenomena were assembled for use as covariates in 

modelling population distributions at high spatial resolution. Full details on the covariates can be found 

in Woods et al (2025). 

These factors are classified into two distinct categories: firstly, continuous variables such as 

topographic elevation and slope, climatic variables  and intensity of night-time lights. Secondly, 

categorical variables, including land cover type  and the presence or absence of settlements and urban 

areas, roads, waterbodies and waterways, and protected areas . Therefore, a collection of the most 

up-to-date (at the time of production), global geospatial raster and vector datasets available were 

identified, gathered and processed into a uniform set of default covariates used for model fitting and 

prediction. All source datasets are open-access, providing near global coverage at sufficient spatial and 

temporal scales. 

To generate a uniform set of default geospatial covariates used for model fitting and prediction, the 

raw datasets as available from data providers were cleaned and converted to ensure format 

accessibility for further spatial processing. All raster datasets were reprojected to WGS1984 datum, 

resampled to 3 arc-second resolution and harmonised according to the global mastergrid. Where 

vector datasets were obtained, features were rasterised prior to reprojection, through resampling and 

harmonisation. Categorical variables, i.e. those indicating presence or absence or a phenomena such 

as land cover class, were converted into binary raster covariates, and subsequently processed to 



generate continuous “distance to” raster covariates, which typically result in more accurate outputs in 

population modelling than categorical data. Full covariate metadata can be accessed via: 

https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/covariates/global2_covariates_

metadata_R2025A_v1.xlsx. 

Built settlement growth model 
A built settlement growth model was developed for input into the RF model, incorporating data from 

several sources. Global Human Settlement Layer (GHSL) data were adopted as the base for the model, 

specifically the BUILT-S (Pesaresi & Politis, 2023) and BUILT-V (Pesaresi & Politis, 2023) products. These 

two products were gathered at the available temporal resolution of 5-year intervals for the study 

period: 2015, 2020, 2025 and 2030; both products are available at 100m spatial resolution. 

Secondarily, two vector datasets depicting building footprints were collected. Google Open Buildings 

V3 Polygons (Sirko, 2021) and Microsoft Building Footprints (Microsoft, 2023) were collected, 

rasterised and combined with the GHSL base settlement layer to enable refined mapping of buildings 

where these were missed in GHSL.  

An integrated approach of random forest and dasymetric modelling with subnational data was used to 

produce annual 100m resolution binary built settlement datasets from these three input data sources 

(similar to Nieves et al., 2020). Moreover, a historical high-resolution binary settlement mask was 

implemented within this methodology to more accurately interpolate between timepoints. This mask 

was obtained from the World Settlement Footprint product, a 10m resolution binary mask of global 

human settlement extents, derived from Sentinel-1 radar and Sentinel-2 imagery (https://urban-

tep.eu/#!pages/dataservices). This addition marks an improvement to the integrated approach 

outlined in Nieves et al. (2020). 

Modelling methods 
A top-down method to population disaggregation via a random forest (RF) dasymetric approach was 

implemented to construct the set of gridded population datasets, broken down by sex and age classes, 

for 242 countries and territories (Stevens et al., 2007). 

A RF algorithm was implemented to generate a gridded population density weighting layer at 3 arc-

second resolution (approximately 100m resolution at the equator); this prediction layer was then used 

to perform dasymetric disaggregation of population counts from administrative units into target grid 

cells at country level (Stevens et al., 2007). RF is a predictive, non-linear, and non-parametric ensemble 

learning approach that generates a large set of decision tree models and aggregates their predictions 

(Breiman, 2001). Decision trees are independently generated by bagging (i.e., by sampling the entire 

dataset with replacement) (Breiman, 1996), and typically two thirds of samples are used to train the 

trees (known as the ‘bagged’ sample). Each node of each decision tree is split according to an iterative 

method in which, at each node, the optimal splitting method is used (Breiman, 2001). After all 

regression trees have been constructed, the outputs of all tree predictions are aggregated by 

calculating either their mode or average, contingent on whether the trees are utilised for classification 

or regression, to produce a final classification decision (Liaw and Wiener, 2002). The remaining third 

of unsampled data, known as ‘out-of-bag’ (OOB), are used to perform the internal cross-validation 

technique to accurately estimate the prediction error of the RF model (Breiman, 2001). This is achieved 

by averaging all mean squared errors calculated using the OOB data. The RF approach is robust to 

overfitting (Breiman, 2001), and its predictive accuracy is not very sensitive to the three parameters to 

be specified for model fitting (Liaw and Wiener, 2002), explicitly, (i) the number of observations in the 

terminal nodes of each tree, (ii) the number of trees in the forest, and (iii) the number of covariates to 

be randomly selected at each node.  

https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/covariates/global2_covariates_metadata_R2025A_v1.xlsx
https://data.worldpop.org/repo/prj/Global_2015_2030/R2025A/doc/covariates/global2_covariates_metadata_R2025A_v1.xlsx


The RF-based dasymetric population mapping approach was used to produce gridded population 

distribution datasets for 242 countries and territories. This approach consists of using a RF algorithm 

to generate gridded population density estimates that are subsequently used, as a weighting layer, to 

dasymetrically disaggregate population counts from administrative units into grid cells (Mennis, 2003).  

RF model fitting was undertaken by generating 500 trees, and assigning the number of observations in 

the terminal nodes equal to one. Following RF model fitting, population density was predicted using a 

reduced selection of covariates. For each target grid cell, the average of all decision tree predictions 

was designated to the cell as the estimated population density value. Where there were insufficient 

observations (i.e. insufficient administrative unit population counts) to fit a RF model for a given 

country, an additional country with similar characteristics was selected, and utilised to fit an 

appropriate RF model for predicting population density at the grid cell level (Gaughan et al., 2014). 

Subsequently, in both scenarios, dasymetric disaggregation of the administrative unit-based 

population counts was undertaken using the population density weighting layer (Mennis, 2003), 

thereby generating two gridded population datasets of estimated number of people per grid cell.  

All tasks described above were performed using the popRF package in R (Bondarenko et al., 2021). The 

popRF package functionalises the RF-informed dasymetric population modelling procedure (Stevens 

et al., 2007) within a single programming language framework, and is publicly available, open source, 

and environment agnostic (Nieves et al., 2021). This package has been parallelised where possible to 

achieve efficient prediction and geoprocessing over large extents, supporting functions that have 

applied utility beyond simply performing disaggregative population modelling (Nieves et al., 2021).  

The previous ‘Global1’ 2000-2020 data exhibited a phenomenon in some locations that we called “the 

donut effect”, whereby population density was observed to decrease in city centres and increase in 

neighbouring rural areas between annual gridded estimates. The phenomenon was negated in the 

updated Global2 timeseries modelling using a new approach. Whereas the Global1 2000-2020 data 

were modelled using a RF approach that disaggregated the whole population for each year in the 

annual timeseries, the new approach for the Global2 timeseries disaggregated the difference in 

population between the target year and preceding year on top of the preceding year’s gridded dataset 

(e.g. for the 2020 gridded dataset, the population difference between 2019 and 2020 was modelled 

“on top” of the 2019 gridded dataset). 

Assumptions and uncertainties 
It is important to note that there are a number of limitations, caveats and uncertainties inherent in the 

modelling approach used to generate these gridded population datasets. 

The administrative unit-linked input census and estimate population data represents a global mosaic 

of data sources across geography and time. The substantial differences between countries in numbers 

of datasets, administrative unit levels, types of data and quality of data mean that output gridded 

estimates vary in accuracy between countries and years. Across time, different demographic projection 

methods were adopted depending on the need to interpolate between timepoints of data, or make 

use of age/sex-structured datasets, or whether projections into the future were required. For some 

countries where recent censuses have not been undertaken, or where census data were not available, 

official estimates, US census bureau subnational projections or UN common operational datasets on 

population statistics were used, and these bring substantial uncertainties with them. 

The administrative unit-level of input population data were not identical across each country. The use 

of finer administrative units for a given country is known to engender higher accuracy of corresponding 

gridded population, provided that the input demographic data is accurate. This difference is likely to 



contribute some variance in the corresponding RF models for each country. This effect is further 

magnified for countries in which insufficient administrative units were available to fit a country specific 

RF model. In these circumstances, the country was “paired” with another country or “grouped” with a 

set of countries during modelling. Some modelling variance is likely due to the influence of the paired 

or grouped countries. 

Two timepoints of census or estimate data were gathered and used as inputs for the population 

modelling process where possible. This was done to better capture subnational patterns and trends of 

demographic change, rather than being reliant on the single timepoint extrapolations from the GPW4 

database that led to many problems with previous global datasets. For some countries this has led to 

compromises, where less spatially-detailed population data than for our ‘Global1’ 2000-2020 data are 

used as input to enable capturing temporal trends. This can result in Global2 output population maps 

looking less spatially detailed than Global1 or not capturing high urban population densities well, but 

instead providing more reliable population totals and demographic breakdowns across broader 

subnational areas. For timepoints between or beyond the two years of input data, population counts 

are modelled and aligned to the UN World Population Prospects 2024 edition baseline national totals. 

Therefore, it is expected that the uncertainty will increase for population datasets representing 

reference years further away from the input population dataset timepoints. This same phenomenon 

is expected to be exhibited for the built settlement growth model, in which several timepoints of input 

settlement data are implemented and interpolated between.  

WorldPop Global 2 population estimates are constrained at the national level to the January 1st 

estimates of the 2024 iteration of the UN World Population Prospects. The January 1st reference date 

is used because it allows the demographic accounting identity to be respected when combined with 

birth, death and migration data measured by calendar year. The demographic accounting identity 

states that the national January 1st population estimates for one year equal the corresponding 

estimate for the previous year, plus births, minus deaths, plus net migration.  

The combination of different sources of multi-temporal demographic data and the assumptions made 

with interpolations and projections, together with the approaches used to map and model buildings, 

settlements and their changes over time mean that comparisons between timepoints should be 

undertaken with care, especially at small area scales. The constraints that are applied to ensure that 

national estimates from the UN World Population prospects 2024 Revision are matched, together with 

subnational proportions from census and other sources, in addition to mapped settlements and their 

modelled changes, can result in complex relationships that can translate to unnatural looking spatial 

discontinuities in estimated population changes. 

For consistency, all datasets were produced using a fixed set of geospatial covariates available on a 

global basis. Therefore, a limited selection of factors considered to be related to population presence 

and densities in each country have been considered globally. This represents a trade-off in the 

production of generalisable models, in which the accuracy of gridded population datasets for some 

countries could be improved by considering additional, locally specific factors. 

Additionally, the official census-based population data may or may not have captured changes caused 

by rapid onset events responsible for sudden fluctuations of population numbers at the administrative 

unit level (e.g. forced displacements due to natural disasters or conflict). Likewise, the produced 

gridded population datasets constructed by these inputs do not account for future rapid onset events 

or season/intra-annual population mobility between administrative units. 

Adjustment to match the UN’s 2024 Revision of World Population Prospects were implemented during 

the demographic modelling stage (UN, 2024). Projection and interpolation of input population sources 



is harmonised according to these baseline totals. Although the WPP population estimates and 

projections are underpinned by analyses of historical demographic trends (UN, 2024), it is important 

to note the assumption that they represent the best-available projections at national levels. If there is 

a need to match national totals to alternative estimates other than those from the WPP 2024 edition, 

this is possible to do and can be discussed with the WorldPop team. 

A default set of geospatial covariates were gathered and processed for RF model fitting and prediction. 

The choice of these geospatial factors was based on literature reviews of phenomena considered to 

be highly related with population densities and distributions (Nieves et al., 2017, Dobson et al., 2000, 

Nagle et al., 2014). The methods presented here therefore make the assumption that the default set 

of covariates represent a comprehensive set of environmental and physical factors that are associated 

with population distribution. 

Users should keep in mind that the construction of a new and improved mastergrid means that there 

is a mis-alignment of grid squares between the old ‘Global1’ 2000-2020 data and these new data that 

may impact comparisons or analyses that are being transferred to the new data. 

Contact Us 
We remain a relatively small team in the School of Geography and Environmental Science at 

the University of Southampton and cannot check and validate every area of the planet across 

multiple years. Therefore we rely on those of you who may be reading this to alert us to potential, 

errors and inconsistencies. You may have local knowledge or access to datasets that we were unable 

to include in our data production process. We are always grateful to hear about this, get 

your feedback and try our best to fix any issues with the estimates. Please contact us via our website 

or email.  

https://www.southampton.ac.uk/about/faculties-schools-departments/school-of-geography-and-environmental-science
https://www.southampton.ac.uk/
https://www.worldpop.org/contactus/
mailto:info@worldpop.soton.ac.uk
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