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Note: This report assumes familiarity with Bayesian statistical models and notation, Stan and JAGS
software, and the R statistical programming language.
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Introduction

Statistical models used to map estimates of population counts across the landscape require observations of pop-
ulation counts from a representative sample of locations to use as training data. These data usually come from
household surveys in which populations are enumerated within geographically defined survey locations. A strat-
ified random sample is ideal for recovering unbiased estimates of the mean and variance of population densities.
However, national household surveys (e.g. Demographic and Health Surveys or Living Standards Measurement
Surveys) often implement a PPS sampling design (Probability Proportional to Size) in which locations with higher
population densities are more likely to be included in the sample compared to a random sample. This will result
in biased estimates of average population densities for population modelling. Population-weighted sampling is
intended to approximate random samples of individuals or households from sets of geographically clustered house-
holds, but it does not produce random samples of locations (and therefore population sizes) needed for geographical
population models.

Our objectives here were to:

1. Demonstrate that a population-weighted sample results in biased estimates of population densities,
2. Demonstrate that model-based estimates of population totals for large areas are sensitive to this bias,
3. Explore Bayesian weighted-likelihood and weighted-precision approaches to produce unbiased parameter

estimates, and
4. Demonstrate that weighted models can recover unbiased estimates of population densities and population

totals from a population-weighted sample.

This analysis was intended as a theoretical foundation to support ongoing development of statistical models to
estimate and map population sizes using weighted survey data as inputs.

Methods

We simulated populations by drawing population densities for each location from a distribution with known
parameters. We then produced various types of samples from those populations: random, population-weighted,
or a combination. Every population included one million locations and every sample included 2000 locations. A
simulated “location” could represent a 1 hectare populated grid square. We fit three types of models to these data
trying to recover the known population parameters: unweighted model, weighted-precision model, and weighted-
likelihood model.

All simulations were conducted using the R statistical programming environment (R Core Team 2020). Statistical
models were fit using either the RStan R package (Stan Development Team 2020) with the Stan probabilistic
programming language (Stan Development Team 2019a) or the runjags R package (Denwood 2016) with JAGS
software (Plummer 2003).

Simulated Populations

We used a log-normal distribution to represent population densities following the population model of Leasure et
al (2020):

Ni ∼ Poisson(DiAi)
Di ∼ LogNormal(µi, σt,g)

µi = αt,g +
K∑
k=1

βkxk,i

(1)

In this model, Ni was the observed population count and Ai was the observed settled area (ha) at location i.
Population densities Di were modelled as a function of settlement types t (e.g. urban/rural), geographic units
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g, and K geospatial covariates xk,i. The regression parameters αt,g, βk, and σt,g estimated average population
densities, effects of covariates, and unexplained residual variation, respectively.

The intended purpose of Eq. (1) was to estimate model parameters based on observed population data. For the
purposes of the current simulation study, we reversed that logic. We provided pre-defined parameter values to
generate simulated population data.

For our simulations we made a series of simplifying assumptions to this model. We assumed that every location i
included one hectare of settled area (i.e. Ai = 1) and we ignored the Poisson variation so that Ni = Di. We also
ignored the effects of settlement type t, geographic location g, and covariates xk,i so that they were dropped from
the model. These simplifying assumptions allowed us to isolate the effects of weighted sampling in the absence of
these potentially confounding effects. While beyond the scope of the current report, relaxing these assumptions
and assessing their effects should be the focus of future theoretical and empirical studies.

The simplified model used for our simulations was:

Di ∼ LogNormal(log(µ), σ) (2)

Note: We modelled the median µ on the natural scale so that the parameter estimate was easier to
interpret (i.e. average population densities), but we kept σ on the log-scale to simplify the equations.

We simulated population densities (i.e. count of people per hectare) at one million locations by taking one million
draws from this log-normal distribution. We repeated this for a range of parameter values for µ (i.e. 100, 250,
500) and σ (i.e. 0.25, 0.5, 0.75).

Following Eq. (2), a population where µ = 250 and σ = 0.5 can be simulated across one million locations using
the following R code:

# population parameters
mu <- 250
sigma <- 0.5

# number of locations in full population
pop_n <- 1e6

# simulate population densities at all locations
pop <- rlnorm(n = pop_n,

meanlog = log(mu),
sdlog = sigma)

# plot distribution of population densities
hist(pop)
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Simulated Survey Data

We simulated three sampling designs, always with a sample size of 2000 locations:

1. Random sampling,
2. Population-weighted sampling, and
3. A combination of random and population-weighted sampling.

Random Sample

The random sample was simply drawn using the sample function to draw 2000 samples without replacement from
the simulated population densities:

# sample size (number of locations)
n <- 2e3

# random sample
D <- sample(x = pop,

n = n)

Population-weighted Sample

To draw a population-weighted sample, we first calculated sampling probabilities based on the population at
each location. These were then used to draw a weighted (i.e. non-random) sample from the population in which
locations with higher population densities were over-represented.
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Note: A random sample is equivalent to a weighted sample in which all samples have equal weights.

# sampling weights based on population density
w <- pop / sum(pop)

# select locations for a weighted sample
i <- sample(x = 1:pop_n,

size = n,
prob = w)

# population densities at selected locations
D <- pop[i]

Combined Sample

Combined samples (random and weighted) were produced using several different proportions of random samples
(i.e. 0.2, 0.5, and 0.8). For example, if 20% of the 2000 sampled locations were random samples, then 80% of the
2000 sampled locations would have been weighted samples.

# proportion random
prop <- 0.5

# select locations for weighted sample
i <- sample(x = 1:pop_n,

size = n*(1-prop),
prob = w)

# select locations for random sample
j <- sample(x = (1:pop_n)[-i],

size = n*prop)

# weights for selected locations in weighted sample
w_i <- w[i]

# weights for selected locations in random sample
w_j <- rep(x = mean(w_i),

times = n*prop)

# population densities at selected locations
D <- pop[ c(i,j) ]

# weights at selected locations
w <- c(w_i, w_j)

Notice that we assigned equal weights to all of the random samples that were equal to the mean weight among
the weighted samples. In other words, each random sample was given an equal weight in the model comparable
to an average weighted sample. This was intended to balance the influence of the random and weighted portions
of the sample.

Statistical Models

We evaluated four statistical models:

1. Unweighted model (Stan),
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2. Weighted-likelihood model (Stan),
3. Weighted-precision model (Stan), and
4. Weighted-precision model (JAGS).

The unweighted model was included to evaluate the bias that arises when fitting an unweighted model to
population-weighted sample data. The weighted-precision and weighted-likelihood models were designed to use
sample weights to recover unbiased estimates of population parameters from a weighted sample. We developed the
weighted-precision model for both Stan and JAGs to demonstrate that both implementations produced the same
results and to provide example code for both. The weighted-likelihood approach required a direct adjustment to
the likelihood that was not possible to implement in JAGS.

All models were run with four MCMC chains including a burnin period of 1000 iterations and an additional 1000
iterations that were retained for analysis. MCMC chains for all models achieved convergence. For JAGS models,
convergence was defined as Gelman-Rubin statistics (potential scale reduction factors) that were less than 1.1 for
all parameters (Gelman & Rubin 1992). For Stan models, convergence was defined as R-hat less than 1.05 (Stan
Development Team 2020) (https://mc-stan.org/rstan/reference/Rhat.html).

Unweighted Log-normal

Our simplest model was a log-normal with no weights:

Di ∼ LogNormal(log(µ), σ) (3)

Notice that this is identical to Eq. (2) that was used to generate our simulated populations. Our implementation
used the following Stan model:

data{
int<lower=0> n; # sample size
vector<lower=0>[n] D; # observed population densities

}

parameters{
real<lower=0> mu; # median (natural)
real<lower=0> sigma; # standard deviation (log)

}

model{
D ~ lognormal(log(mu), sigma); # likelihood

mu ~ uniform(0, 2e3); # prior for mu
sigma ~ uniform(0, 5); # prior for sigma

}

Weighted-likelihood

The weighted-likelihood approach used the same log-normal model but implemented a manual adjustment to the
likelihood function (Stan Development Team 2019b) for each sample based on the sample weights to account
for the increased probability of including locations with high population densities in the weighted sample. We
implemented this model in Stan:

data{
int<lower=0> n; # sample size
vector<lower=0>[n] D; # observed population densities
vector<lower=0,upper=1>[n] w; # sampling probabilities (weights)
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}

parameters{
real<lower=0> mu; # median (natural)
real<lower=0> sigma; # standard deviation (log)

}

model{

# weighted likelihood
for(i in 1:n){

target += lognormal_lpdf( D[i] | log(mu), sigma ) / w[i];
}

mu ~ uniform(0, 2e3); # prior for mu
sigma ~ uniform(0, 5); # prior for sigma

}

Note: The sampling probabilities w were defined in the section above (see Simulated Survey Data).

In this model, the likelihood for each sample is divided by its sampling probability–the probability of a location
being selected for the sample out of the one million locations in the population. This adjustment to the likelihood
normalizes the influence on parameter estimates of locations that had higher sampling probabilities (i.e. locations
with high population densities are over-represented in a population-weighted sample). If this model were used for
a random sample, all of the weights would be equal and it would be equivalent to the unweighted model above
(see Unweighted Log-normal).

Weighted-precision (Stan)

A potential alternative to the weighted-likelihood approach would be to scale the precision τ of the log-normal
using the location-specific weights wi. Precision τ is defined as the inverse of variance σ2:

τ = σ−2

σ = τ−0.5 (4)

For this model, we define an inverse sampling weight mi that is scaled to sum to one across all samples:

mi = w−1
i∑n

i=1 w
−1
i

(5)

We will refer to these scaled inverse sampling weights as model weightsmi. Now we can specify a weighted-precision
model as:

Di ∼ LogNormal(µi, τ−0.5
i )

τi = θ−2mi

(6)

where θ−2 is a naive precision term that does not account for the model weights mi. Notice that the precision
τi is location-specific (i.e. indexed by i) because it has been adjusted by the model weights mi, and that τ−0.5

i is
an adjusted location-specific standard deviation. Where the model weights are relatively low, the location-specific
precisions τi will be decreased to reduce the weight of those samples in the model. For our population-weighted
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sample, this reduced the weights of locations with high population densities that were over-represented in the
sample.

Our goal was to recover an unbiased estimate of the standard deviation for the overall distribution of population
densities among all locations in the population. So far, we have only estimated location-specific precisions τi that
are dependent on location-specific model weights mi. We derived the global standard deviation σ using a weighted
average of the location-specific standard deviations τ−0.5

i :

σ =
∑n
i=1 τ

−0.5
i

√
mi∑n

i=1
√
mi

(7)

We used √mi for this weighted average so that the weights are on the same scale as the standard deviations being
averaged. Remember that the model weights mi were used to adjust a naive precision parameter and so here we
want to use a square root transformed weight to calculate a weighted average of standard deviations τ−0.5

i .

We implemented the weighted-precision model in Stan:

data{
int<lower=0> n; # sample size
vector<lower=0>[n] D; # observed counts
vector<lower=0,upper=1>[n] w; # sampling probabilities

}

transformed data{

# model weights (scaled inverse sampling weights)
vector<lower=0,upper=1>[n] m = inv(w) ./ sum(inv(w));

}

parameters{
real<lower=0> mu; # median
real<lower=0> theta; # naive standard deviation

}

transformed parameters{

# location-specific weighted precision
vector<lower=0>[n] tau = m * pow(theta,-2);

}

model{

# likelihood with weighted precision
D ~ lognormal( log(mu), sqrt(inv(tau)) );

mu ~ uniform(0, 2e3); # prior median
theta ~ uniform(0, 1); # prior naive standard deviation

}

generated quantities {

# weighted average global sigma
real<lower=0> sigma = sum( sqrt(inv(tau)) .* sqrt(m) ) / sum( sqrt(m));

}
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Weighted-precision (JAGS)

We also implemented the weighted-precision model using JAGS software to provide an example of the coding
differences and to demonstrate that both Stan and JAGS produce the same results. JAGS parameterizes the
log-normal distribution using precision rather than the standard deviation used by Stan.

model{

# model weights (scaled inverse sampling weights)
m <- pow(w,-1) / sum(pow(w,-1))

for(i in 1:n){

# likelihood with weighted precision
D[i] ~ dlnorm(log(mu), tau[i])

# location-specific weighted precision
tau[i] <- pow(theta,-2) * m[i]

}

# prior for median
mu ~ dunif(0, 2e3)

# prior for naive standard deviation
theta ~ dunif(0, 1)

# weighted average global sigma
sigma <- sum( pow(tau,-0.5) * sqrt(m) ) / sum( sqrt(m) )

}

Population Totals

We used the fitted models to estimate total population sizes for the simulated populations. This was done by
producing posterior predictions for the one million locations represented in the original simulated population data
(see section Simulated Populations).

Di ∼ LogNormal(log(µ), σ)

T =
1e6∑
i=1

Di

(8)

The location-specific posterior predictions for population densities Di (i.e. people per hectare) were assumed to
equal the population count Ni for each location because we assumed that each location contained one hectare
of settled area Ai = 1. We summed the location-specific posterior predictions for population counts across all
locations to derive a posterior prediction for the total size T of the simulated population.

Results

Results presented here are based on simulated populations where µ = 250 and σ = 0.5. For simulations that
contained a combination of random and weighted samples, we used a 50/50 split (i.e. prop = 0.5). We explored
other combinations of parameters which produced results similar to those presented here (see supplementary files
in Appendix A). Supplementary files also include source code to reproduce these results and to conduct simulations
using other parameters.
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The unweighted model was able to recover the simulated “true” distribution of population densities from a random
sample but not from a population-weighted sample (top panels of Fig. 1). All three weighted models were able
to recover the “true” population distribution from a population-weighted sample and a combined sample (bottom
panels of Fig. 1). Posterior predicted distributions of population densities were very similar for all of the weighted
models (Fig. 2).

Some important differences were apparent among the three weighted models when we looked at individual pa-
rameter estimates for the median µ, standard deviation σ, and mean (µe0.5σ2). Most importantly, the weighted-
likelihood approach produced marginal posterior distributions that were so narrow that they were essentially
point-estimates that did not account for parameter uncertainty (Fig. 3). Although they did not adequately
account for parameter uncertainty (i.e. uncertainty in statistical estimates of the mean, median, and standard
deviations), the point-estimates appeared to be unbiased estimators (Tables 5, 6, and 7).

In contrast, the weighted-precision approaches produced full posteriors that accounted for parameter uncertainty
(Fig. 4; Tables 1, 2, and 3). As expected, unweighted models that were fit to population-weighted samples
significantly overestimated the median µ and the mean (µe0.5σ2), but not the standard deviation σ (Fig. 4).

The bias in parameter estimates from an unweighted model fit to a population-weighted sample resulted in signif-
icant overestimation of the total population when the model predictions were applied across one million locations
(scenario “wu” in Fig. 6; Table 4). The weighted models were all able to recover unbiased estimates of the total
population, but the weighted-likelihood approach did not produce robust credible intervals (Fig. 5; Table 8).
This was presumedly because of the previously mentioned issue with the weighted-likelihood failing to account for
parameter uncertainty. The weighted-precision approaches produced unbiased estimators of total population and
robust credible intervals (Fig. 6; Table 4).

Discussion

The results suggested that the weighted-precision model was the only approach that recovered unbiased estimates
of population densities and population totals with robust credible intervals from population-weighted samples.
The weighted-likelihood model recovered unbiased estimates of population densities and totals from population-
weighted samples, but did not produce robust credible intervals. The unweighted model recovered unbiased
estimates with robust credible intervals from random samples, but produced significantly biased estimates of
population densities and totals from population-weighted samples. For these reasons, we recommend the weighted-
precision model for use with population-weighted samples and we have demonstrated that the Stan and JAGS
implementations of this model produced the same results.

Compared to the statistical model presented by Leasure et al (2020), our simulation made some simplifying
assumptions to isolate effects of population-weighted sample designs on these statistical models. For the simu-
lations, we assumed that area of settlement was equal in every location and we ignored the effects of settlement
type (urban/rural), geographic location, and other geospatial covariates. Exploring the effects of these factors in a
simulation framework was beyond the scope of this proof-of-concept study, but we encourage further investigation
using a combination of empirical and simulation-based studies.

We defined the sampling weights as the probability of a location being selected for the sample. In a random sample,
those probabilities would be equal across all locations in the population. In our simulation of population-weighted
sampling, we simply defined this based on the proportion of the total population that occurred in each location,
and we defined locations as having equal geographic size. In practice, the sampling weights used for PPS sample
designs in household surveys are often much more complicated, involving weighted selection of survey clusters
from a national sampling frame followed by weighted sampling of households within the selected clusters. This
presents additional challenges for weighted models using these real-world weighted survey data (Gelman 2007). Our
simulation demonstrated that the weighted models can recover unbiased parameter estimates from a population-
weighted sample, but this only holds true if the available sampling weights represent the true probability of each
survey cluster being selected from the national sampling frame.

Weighted-precision models were used to produce high-resolution gridded population estimates for Zambia (World-
Pop 2020a) and Democratic Republic of the Congo (Boo et al. 2020, WorldPop 2020b). These publications imple-
mented a full version of the weighted-precision model that extended the core model of Leasure et al (2020) from
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Eq. (1) to include a weighted-precision that accounted for population-weighted sample data while also accounting
for geographical location, settlement type (urban/rural), building footprints, and other geospatial covariates.

The weighted-likelihood approach seemed to produce point-estimates rather than true Bayesian posterior distribu-
tions that accounted for paramater uncertainty (Fig. 3). This was presumedly the result of the direct modification
of the likelihood in the Stan model (see section Weighted-likelihood). This implementation of weighted-likelihood
is not advised for adjusting a log-normal distribution, but it may perform better for discrete distributions where
sufficient statistics are appropriate (See “Exploiting sufficient statistics” in the “Efficiency Tuning” chapter of
the Stan User Guide (2019a)). More investigation is needed on this topic to determine if this approach may be
suitable for the one-inflated Poisson models (Leasure & Tatem 2020) developed to produce full coverage gridded
population estimates of people per household from census microdata (Minnesota Population Center 2019), which
sometimes include weighted samples.
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Tables

Weighted-precision Model

Note: The five scenarios shown are: (pop) simulated “true” population; (ru) random sample data with
an unweighted model; (wu) weighted sample data with an unweighted model; (ww) weighted sample
data with a weighted-precision model; (cw) combined sample data (weighted and random) with a
weighted-precision model. The “lower” and “upper” columns show 95% credible intervals.

Table 1: Median µ parameter estimate: Summary statistics for the posterior distributions from the unweighted
and weighted-precision models.

median mean lower upper
pop 250.0 250.0 250.0 250.0
ru 254.0 254.0 248.4 259.3
wu 323.5 323.5 316.4 330.5
ww 254.7 254.7 249.4 259.9
cw 248.6 248.6 243.0 254.4

Table 2: Mean (µe0.5σ2) parameter: Summary statistics for the posterior distributions from the unweighted and
weighted-precision models.

median mean lower upper
pop 283.3 283.3 283.3 283.3
ru 287.0 287.1 280.4 293.7
wu 365.6 365.7 357.4 374.4
ww 288.2 288.3 282.0 294.6
cw 285.0 285.0 278.5 292.0

Table 3: Standard deviation σ parameter: Summary statistics for the posterior distributions from the unweighted
and weighted-precision models.

median mean lower upper
pop 0.500 0.500 0.500 0.500
ru 0.495 0.495 0.480 0.511
wu 0.495 0.495 0.480 0.510
ww 0.498 0.498 0.482 0.514
cw 0.523 0.523 0.507 0.540

Table 4: Derived population totals T : Summary statistics for the derived posterior distributions from the un-
weighted and weighted-precision models.

median mean lower upper
pop 283,246,502 283,246,502 283,246,502 283,246,502
ru 287,007,075 287,051,257 280,441,789 293,578,137
wu 365,627,317 365,697,914 357,366,590 374,421,369
ww 288,247,168 288,283,242 281,977,499 294,695,720
cw 285,019,319 285,030,703 278,418,950 292,024,475

See Fig. 4 for density plots of posteriors from Tables 1, 2, and 3; and see Fig. 6 for a barplot of Table 4.
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Weighted-likelihood Model

Note: The five scenarios shown are: (pop) simulated “true” population; (ru) random sample data with
an unweighted model; (wu) weighted sample data with an unweighted model; (ww) weighted sample
data with a weighted-likelihood model; (cw) combined sample data (weighted and random) with a
weighted-likelihood model. The “lower” and “upper” columns show 95% credible intervals.

Table 5: Median µ parameter: Summary statistics for the posterior distributions from the unweighted and
weighted-likelihood models.

median mean lower upper
pop 250.0 250.0 250.0 250.0
ru 254.0 254.0 248.4 259.3
wu 323.5 323.5 316.4 330.5
ww 254.7 254.7 254.7 254.7
cw 248.5 248.5 248.5 248.5

Table 6: Mean (µe0.5σ2) parameter: Summary statistics for the posterior distributions from the unweighted and
weighted-likelihood models.

median mean lower upper
pop 283.3 283.3 283.3 283.3
ru 287.0 287.1 280.4 293.7
wu 365.6 365.7 357.4 374.4
ww 286.1 286.1 286.1 286.1
cw 283.3 283.3 283.2 283.3

Table 7: Standard deviation σ parameter: Summary statistics for the posterior distributions from the unweighted
and weighted-likelihood models.

median mean lower upper
pop 0.500 0.500 0.500 0.500
ru 0.495 0.495 0.480 0.511
wu 0.495 0.495 0.480 0.510
ww 0.483 0.483 0.483 0.483
cw 0.512 0.512 0.512 0.512

Table 8: Derived population totals T : Summary statistics for the derived posterior distributions from the un-
weighted and weighted-likelihood models.

median mean lower upper
pop 283,246,502 283,246,502 283,246,502 283,246,502
ru 287,007,075 287,051,257 280,441,789 293,578,137
wu 365,627,317 365,697,914 357,366,590 374,421,369
ww 286,114,506 286,113,499 285,826,808 286,398,643
cw 283,260,492 283,258,895 282,950,784 283,558,666

See Fig. 3 for density plots of posteriors from Tables 5, 6, and 7; and see Fig. 5 for a barplot of Table 8.
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Figures

Figure 1: Posterior predicted distributions of population densities from an unweighted model and a weighted-
precision model using a random sample, a population-weighted sample, and a combination sample. Dashed lines
show distributions of population data from the sample of locations. Solid lines show distributions of model-based
population estimates across the sample of locations. Only the weighted-precision model (Stan) results are shown
here, but results were comparable with the weighted-likelihood model (Stan) and weighted-precision model (JAGS)
(see supplementary files in Appendix A).
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Figure 2: Posterior predicted distribution of population densities from weighted-likelihood, Stan weighted-
precision, and JAGS weighted-precision models. The true population distribution includes one million locations
and the weighted sample includes 2000 locations.
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Figure 3: Parameter estimates (marginal posterior distributions) for the median, mean, and sigma from the
weighted-likelihood model. The four scenarios are: (ru) random sample data with an unweighted model; (wu)
weighted sample data with an unweighted model; (ww) weighted sample data with a weighted model; and (cw)
combined sample data (weighted and random) with a weighted model. The vertical red line is the simulated ’true’
parameter estimate.
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Figure 4: Parameter estimates for the median, mean, and sigma from the weighted-precision model. The four
scenarios are: (ru) random sample data with an unweighted model; (wu) weighted sample data with an unweighted
model; (ww) weighted sample data with a weighted model; and (cw) combined sample data (weighted and random)
with a weighted model. The vertical red line is the simulated ’true’ parameter estimate.
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Figure 5: Posterior predicted population totals from a weighted-likelihood model. Population totals include one
million locations from the full simulated population. The four scenarios are: (ru) random sample data with an
unweighted model; (wu) weighted sample data with an unweighted model; (ww) weighted sample data with a
weighted model; and (cw) combined sample data (weighted and random) with a weighted model. The horizontal
line is the simulated ’true’ total population size.
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Figure 6: Posterior predicted population totals from a weighted-precision model. Population totals include one
million locations from the full simulated population. The four scenarios are: (ru) random sample data with an
unweighted model; (wu) weighted sample data with an unweighted model; (ww) weighted sample data with a
weighted model; and (cw) combined sample data (weighted and random) with a weighted model. The horizontal
line is the simulated ’true’ total population size.
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Appendix A: Supplementary Files

All code used to conduct the simulation analyses and produce results are provided in a supplementary file that
is available from http://doi.org/10.5258/SOTON/WP00706. The supplemental code can be used to replicate the
results in this report and to explore different simulation settings and model designs.

The supplementary file leasure2021simulation_supplement.zip is a compressed zip archive that contains three
folders: scripts, models, and output.

The output folder contains simulation results for various parameterizations not presented in the report. It has
sub-folders named for the script and parameters that produced each result.

The scripts folder contains three R scripts:
1. minimum example.R - A minimum example of the simulation framework and weighted models.
2. weighted3ways.R - Evaluate all three weighted models using the same simulated sample data.
3. random + weighted.R - Compare unweighted and weighted models using random, weighted, and combined
samples.

The models folder contains:
1. Unweighted model (Stan)
2. Weighted-likelihood model (Stan)
3. Weighted-precision model (Stan)
4. Weighted-precision model (JAGS)
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