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This population modelling work was conducted as part of a wider multi-country methods
development programme that aims to advance and test methodological approach for producing
population estimates with low uncertainty during intercensal years and in contexts where census
data is absent. As part of this programme, population modelling methods have been developed for
data collected specifically for the modelling, in other countries. This Zambia work is the first
instance where methods have been developed for routinely collected household survey data. In this
report we present our findings and comment on the future work needed prior to use for producing
official population estimates by National Statistics Offices. We thank the Zambia Statistics Agency
for granting us access to survey data for this methods development work.
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1 Introduction

1.1 Background

The richest data on a nation's population and demographic characteristics usually comes from a
national population and housing census. During intercensal years population estimates are
produced by projecting census population counts into the future. The UN generates national
level population projections for most countries, using well established methodologies (UN,
2019) that use national census year population counts, as well as fertility, mortality and
international migration rates. National Statistics Offices often produce subnational population
projections using similar methods. These subnational areas are usually relatively large in
geographic size (e.g. administrative unit level 3) due to the data required for projections (age-
sex disaggregated population counts and demographic rates) not being available at lower (finer-
scale) administrative unit levels. However, the need for accurate population estimates at high
spatial resolution is echoed throughout governmental, humanitarian and service providing
sectors (Tatem, 2014). To generate population data at a finer spatial resolution, administrative
unit population estimates from projections can be disaggregated across the area within
(WorldPop, 2018 & Bondarenko et al 2020). However, the further in time from the original
census data population’s are projected, the larger the impact of some key problems relating to
data availability and geographical constraints of data on the resulting population projection
estimates. These key problems are then propagated into any disaggregated high spatial
resolution population estimates that are based on projected population numbers. The key issues
include:

* Internal migration between subnational units is often not considered due to lack of data.
Similarly, understanding which subnational unit international migrants have moved to
and from may be unknown, even when national estimates exist

* Expansion of settlements across subnational administrative unit boundaries, leading to
the settlement's growth incorrectly being projected solely in the settlement's original
unit

* Variation in fertility and mortality rates within administrative units not considered. This
may be particularly significant in urban areas where administrative units contain very
different settlement types and contexts

* Changes in the boundaries of administrative units and creation of additional
administrative units

To address the need for accurate population estimates at a high spatial resolution, particularly
when population figures rely on projections over extended time periods, alternative approaches
are being developed. One approach, known as the 'bottom-up' approach (Wardrop et al., 2018;
Weber et al., 2018, Leasure et al. 2020a), harnesses population counts for well-defined, small
areas across a country or study region collected more recently than the country’s last census.
This approach involves developing a statistical model that best describes the relationship
between population densities and variables (geospatial covariates), such as building density or
vegetation cover, at survey sample locations. The parameterised statistical model, along with
the geospatial covariate values for every location across a country, are then used to predict
population estimates at each of these locations.

1.2 Zambia context
The last Zambian population and housing census was conducted in 2010. During 2020 the
Zambia Statistics Agency (ZamStats) carried out pre-census cartography fieldwork, in
preparation for their upcoming census. To support fieldwork activities, WorldPop worked with
ZamStats to produce high-resolution population estimates (at approximately 100m x 100m)
based on recently collected survey data. Because these estimates provide local level information
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about where populations are located, they can be beneficial for planning household level
fieldwork and cross-referencing field collected data. One key advantage of our modelling
approach is that it provides a measure of uncertainty in the population estimates. This can be
useful for planning and carrying out fieldwork by extracting the upper and lower population
estimates within a 95% credible interval (CI) and comparing these to the field collected data.
For example, if the modelled population estimates for an enumeration area (EA) show a mean
value of 1,000, as well as upper and lower 95% CI of 800 and 1,250, respectively, this may
indicate that the EA has a suitable population size for field data collection. Additionally, post-
fieldwork comparisons between the estimates and field collected population data can be carried
out. If fieldwork revealed that 900 people were present in the EA example above, we would
conclude that this is within the 95% CI of the population estimates data, however, a population
count of 790 or 1,260 from field work would be outside the 95% CI and may indicate that
further investigation of that EA is needed. While a discrepancy such as this could be due to
inaccuracies in the modelled estimates or the field data, this form of cross-referencing can be
helpful for identifying areas missed during field work and/or mismatches between digitised EA
boundaries and the area in which field data was collected.

In this report we describe the methodology developed for the Zambia population modelling
work. We build on previous pioneering work conducting to produce population estimates for
Nigeria where Bayesian hierarchical modelling approaches were developed from methods more
commonly used in the field of ecology (Leasure et al 2020a). In contrast to the Nigeria work,
here we modelled data from three different surveys that had different survey sampling designs
and collected different enumeration related data. The three field enumeration datasets came
from the Saving Mothers, Giving Life survey - 2017 (SMGL), the Livestock Census survey - 2018
(LSC) and the pre-census Pilot Mapping/Cartography - 2019 (PM). ZamStats anonymised this
data prior to access and use for this analysis. A bespoke approach was developed, in both data
preparation and modelling, to accommodate for the differences between the surveys and reduce
biases in the results. Key elements of this approach include:

* Automating the creation of cluster boundaries from GPS located households to

accurately delineate the area surveyed

* Integrating reported households that could not be enumerated into the modelling

framework to increase the accuracy of population estimates and uncertainty measures

* Incorporating weighted likelihoods for each sample to accounted for ‘Probability

Proportional to Size’ (PPS) sampling strategies that increase the probability of selecting
a survey cluster with a larger population count

¢ Using building footprints data to generate covariates that represent fine scale variability

within settlements

2 Methods

2.1 Data
2.1.1 Survey Data
All survey datasets included counts of population enumerated for each household, with
household or building locations (latitude and longitude) recorded using GPS-enabled devices.
The key differences between the three survey datasets were: 1. information on households that
could not be enumerated (missing households); 2. spatial coverage; and, 3. site location
selection (survey sample design). Missing households data was present for LSC and PM, but
absent for SMGL. LSC consisted of sample locations across the whole country, while PM
consisted of full enumeration across two districts and SMGL consisted of almost full coverage
across four areas, each consisting of multiple districts. No site selection process was used for PM
and SMGL as they aimed to survey everywhere within their target regions, however, LSC
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employed a probability proportional to size (PPS) sampling design. For the sampling approach
of LSC, the country was first stratified by districts and then enumeration areas (EAs) were
selected by weighting EAs within each district by their number of households according to the
2010 census household listing data.

Population densities at each survey location are required for the statistical model, and
therefore to accurately calculate population density we need to know the exact area that was
covered in the survey fieldwork, in addition to the population count for the survey
cluster/enumeration area. Digitised survey cluster boundaries were unavailable for these three
surveys, however, GPS locations of households (point locations) were provided which allowed
us to demarcate the area covered during field data collection.

The following three sections describe the individual surveys and how their data were
prepared for the modelling.

Pilot mapping/cartography - This data identified the location of all residential buildings as
well as non-residential areas across the two districts, Lusaka and Chongwe. Data point locations
were cross-checked and verified using multiple geo-location variables included in the data.
Because the point data covered two districts, it was necessary to sub-divide the data into
smaller units; the study area was objectively split up into 1km x 1km blocks. The blocks not on
the edge of the study area were classed as ‘clusters’ with the 1km x 1km block demarcating the
cluster boundary. The 1km x 1km size of the blocks was used because: a) smaller sizes would
have led to a larger number of points being potentially assigned to the wrong clusters due to
GPS error, and b) larger sizes would have led to many clusters having very large population
counts. The aim of the 1km x 1km size was to obtain clusters comparable to those in the two
other survey datasets whilst maintaining objectivity in the approach. Blocks on the edge of the
study area included areas not covered by the survey, and therefore bespoke cluster boundaries
were created around the GPS points inside these ‘edge’ blocks. These cluster boundaries were
generated using the R function ahull (Pateiro-Lopez, B. and Rodriguez-Casal, A., 2019; Dauby, G.,
2020). We required a minimum of 15 points to create a cluster boundary because situations
with less than 15 points could result in high uncertainty in the exact location of the boundaries,
leading to an incorrect demarcation of the settled area for which data was collected. Clusters
were not created for ‘edge’ blocks with less than 15 GPS points and therefore these areas were
excluded. This approach of creating cluster areas from the larger study region was aimed to be
objective, however, we did not investigate potential impact of this demarcation approach on the
results. Future work needed to understand how sensitive the statistical model might be to
different cluster demarcations is outlined in the discussion section of this report.

This dataset included information about households (in residential buildings) where
enumeration was not possible, e.g. due to non-response (no one answering the door). A small
number of non-responders in household surveys is common and, in this survey, well
documented. This information is incredibly useful for population modelling because it allows
for uncertainty in the observed population counts to be modelled. In order to calculate accurate
proportions of missing household counts per cluster we first identified the data points that were
residential. We classified points as residential if their structure type was categorised as a
‘Residential building’ or if the residential building variable was non-NA. This allowed households
classified as ‘residential’ or ‘multi-purpose’ to be included as our aim was to identify all the
buildings where people lived. Second, we identified erroneous household sizes and replaced
them with NAs. There were three obvious data entry mistakes (population counts per building
of 1000000018, 999999 and 40004) and three more where values were between 200 and
1,000. Visual inspection of data points and building footprints surrounding these three
potentially erroneous household sizes verified that they were almost certainly errors, as their
building footprints looked similar to nearby footprints with corresponding household counts of
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between 1 and 15 and were clearly not counts for several buildings. All six household counts
above 200 people were replaced with NA household sizes and treated as missing household
counts. The next largest household size was 139 for a block of flats (enumerated as one
household). All household sizes below 140 were therefore assumed to be correct.

Livestock census survey - This dataset included a nationally representative sample of survey
clusters. As this survey used probability proportional to size (PPS) sampling, we needed the
survey weights for each cluster. There were four clusters without survey weights data and these
were therefore excluded.

Although cluster boundaries were unavailable, cluster IDs were given for the GPS located
households (point locations) making demarcation of the cluster areas possible. Any GPS
locations outside of the country were replaced with NAs, i.e. unknown location, and any clusters
that did not have GPS locations for at least 95% of listed households were excluded, as accurate
demarcation of clusters was only possible where a high proportion of the household locations
was known.

While survey data collected with GPS coordinates can lead to improved knowledge of the
exact area covered during fieldwork compared to using standardised digitised boundaries, it
can also lead to discrepancies in some cases. These include a) GPS points from different clusters
having significant overlap, and b) grouping of GPS points in a very small non-residential area far
away from the rest of the cluster’s points. The latter most likely occurs if data was ‘logged’ by
the GPS devise after surveyors returned to their ‘base’. Because of associated issues in
determining the exact area covered during fieldwork where discrepancies in GPS locations exist,
we exclude clusters with significantly overlapping GPS locations and those with more than one
grouping of at least 5 GPS points with obvious settled area in between groupings. Where
clusters had fewer than 5 GPS locations clearly not at their cluster site, these GPS locations were
replaced with NAs and the 95% threshold for valid GPS points per cluster was applied. For
clusters meeting the 95% threshold of valid GPS points, cluster boundaries were generated
using the R function ahull, as was done for the ‘edge’ areas of the pilot mapping dataset
(described above). All clusters post-data cleaning had 15 or more points, and therefore no
further clusters were excluded before creating cluster boundaries.

Saving Mothers, Giving Life survey - This dataset contained GPS located households for four
regions. Like the livestock census data, GPS points were linked to cluster IDs and we therefore
followed the same procedures for demarcation of cluster boundaries. These were: 1) replacing
any GPS locations outside of the country with NAs, 2) excluding clusters that did not have GPS
points for at least 95% of the total number of households recorded, 3) excluding clusters with
significant overlap in GPS locations (which was very common in urban areas of the SMGL data,
however, only 11% of the SMGL clusters were urban), 4) excluding any clusters with less than
15 points, and 5) creating cluster boundaries using the R function ahull.

The cluster level survey data from the three surveys were then combined to create the model
input dataset. The proportions of missing households per cluster were calculated for the
livestock census survey and pilot mapping datasets. The SMGL data did not include information
about missing households. We address this unknown factor in our modelling approach and
make use of the existing missing households data from the livestock census survey and pilot
mapping to parameterise the missing households sub-model section of our statistical model.
This allows for the uncertainty in cluster population counts for the SMGL data to be accurately
accounted for.



To reduce the uncertainty in our results, clusters from the livestock census survey and pilot
mapping with more than 20% of missing household size data were excluded from the input data
used to fit the regression model. There were no spatial biases in these excluded clusters.

Where survey clusters from different surveys overlapped, the most recently collected
survey cluster was kept to avoid pseudo-replication (Hurlbert, 1984). Additionally, one cluster
was dropped (pilot mapping) because it contained just one person. The final dataset included
2,605 clusters. Fig 1. shows the spatial distribution of the clusters and Table Al. shows the
number of clusters by survey and settlement type.
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Fig. 1. Number of survey clusters per district included in the population modelling. Four districts out of
116 districts of Zambia had no clusters (white). The total number of clusters was 2,605. Note, these are
not official government boundaries. The production of this boundaries dataset was facilitated by GRID3 in
collaboration with the Government of Zambia (Ministry of Lands, Ministry of Local Government, Zambia
Statistics Agency, Electoral Commission of Zambia).

Because the Livestock census survey was conducted using probability proportional to size
(PPS) sampling, we needed to account for the fact that the dataset is biased towards clusters
with larger population sizes. The survey weights (the relative measure of how representative a
cluster is of the wider population) were included in the survey data. Survey weights for pilot
cartography and SMGL were assumed to be equal across all their clusters (i.e. random sampling)
and the single survey weight value assigned to them was the mean survey weight from the
livestock census survey. This results in the model putting equal weight on the pilot cartography
and SMGL clusters, whilst the weight varies for the livestock census clusters where, generally,
clusters with lower population sizes have a higher survey weight to account for the bias in the
sample design where higher population clusters were more likely to be selected and surveyed.
We normalised (scaled to sum to one) the survey weights to produce model weights which were
then used in the statistical model to reduce biases due to survey sample design. There is
inherently additional bias due to the SMGL and pilot mapping data being spatially targeted.
While we did not explicitly account for this bias, the spatial hierarchical nature of our statistical
model leads to inferences within any given district and settlement type to rely more on the data
from the same district and settlement type. Because of this we expect district-settlement type
pairs that were well represented in the data not to be heavily influenced by any spatial biases of
the overall input dataset. However, those district-settlement type pairs not well represented



may be impacted by spatial biases in the data especially if they were in the same province as the
concentrated clusters.

2.1.2 Geospatial Covariates
We used province and district boundaries in our statistical model. The production of the
boundaries dataset used was facilitated by GRID3 in collaboration with the Government of
Zambia (Ministry of Lands, Ministry of Local Government, Zambia Statistics Agency, Electoral
Commission of Zambia) and are not official government boundaries. For this work we rasterised
the boundaries using the WorldPop WGS84 projected raster master grid for Zambia (WorldPop,
2018).

For the statistical modelling we determined the relationship between population
density and predictive variables. Our measure of population density was population per total
building area, where building area included both residential and non-residential buildings. All
building footprint related geospatial layers were created using building footprints provided by
the Digitize Africa project of Ecopia.Al and Maxar Technologies (2020).

The building footprints data includes extremely large structures such as stadiums, but
also detects solar farms as large ‘structures’ too. Because it is unlikely that people will be living
in these exceptionally large structures, we did not want the final population dataset to include
people in grid cells that contain these large structures only, and so we applied a building area
threshold of 750m?2 to filter out very large buildings. Note that it is unlikely that this led to the
exclusion of any flats or dormitories.

After filtering out very large buildings we generated gridded geospatial (raster) layers
for metrics of the remaining buildings. To do this we first converted building footprint polygons
into building centroid points in UTM projection using the st_centroid function in the sf R package
(Pebesma, 2018). The centroid points were then re-projected to WGS84 using the st_transform
function so that their corresponding cell IDs in the WGS84 projected master grid raster could be
identified. Building centroid cell IDs were obtained using the cellFromXY function in the raster R
package (Hijmans & van Etten, 2012).

Building counts per grid cell were calculated by simply summing the number of
centroids for each cell ID. Building density per grid cell was calculated by dividing the building
count in a cell by the area of the cell. Grid cell area was calculated using the area function in the
raster R package. To calculate cluster-level mean building density we took the mean of density
values across all settled pixels within a cluster’s boundary. The three building area-related
layers were all derived using the "Shape_Area" attribute contained in the .gdb building
footprints dataset, by applying sum (total area), mean and coefficient of variation (standard
deviation divided by mean), for the focal area (either grid cell or cluster areas).

We categorised each grid cell with at least one building footprint centroid as either
rural, small urban or large urban, based on the size of the settlement they belong to. Grid cells in
clusters smaller than 500 cells were classed as rural. Grid cells within clusters of 500 to 1,500
contiguous grid cells were classed as small urban. Grid cells within clusters of more than 1,500
contiguous grid cells were classed as large urban. The clump function in the raster R package
was used to identify clusters of contiguous cells; grid cells were classified as being in the same
cluster if they were directly adjacent to any of the eight neighbouring grid cells, including
diagonally adjacent (Queen contiguity).

To assess potential impact of the age of imagery used to extract the building footprints,
we summarised imagery ages for all building footprints included in the survey clusters (used in
the modelling) and across the whole country (used in the predictions).



2.2 Statistical Modelling

The goal of this work was to build and parameterise a statistical model that could then be used
to predict population counts across every 100m x 100m grid cell of Zambia. We used a Bayesian
statistical approach as this allowed us the flexibility to build a model that could account for
known uncertainties in the observed data, therefore allowing us to produce results with
realistic uncertainty in the population estimates. The model we used includes a core regression
model (Eq 4.) that accounts for biases in the observed data due to population weighted
sampling design (Eqs 3. and 5.) and an observation error sub-model that accounts for
uncertainty in the observed data due to missing households (Eq 1.).

The core regression model describes the relationship between population density (D;)
and the three predictor variables (covariates):

1. log mean building footprint area (X ;),

2. log mean building footprint density (X, ;), and

3. coefficient of variation in building area (X3 ;).

The regression has a hierarchical random intercept where districts are nested within provinces
and provinces are nested within settlement type. This structure allowed us to account for
similarities between observed data within the same district, province and settlement type that
cannot be explained by the covariates. Such similarities may result from local level social and
cultural trends that are difficult to measure. In the final statistical model used for the
predictions, i.e. the model that predicted the observed data well, two of the covariates
(X2; and X3;) had coefficients varying by settlement type (65 and Y5).

To account for biases due to survey sampling designs we used model weights for each
cluster (described in the data preparation section). If the model weight was relatively low, that
cluster’s population density value would contribute less to the fitting of the model compared to
clusters with higher model weights. This is implemented in Eqgs 3. and 5. of the model where the
precision (7;) of the population density (D;) estimated for a cluster is adjusted by the model
weight (w;).

Where survey clusters have households that were not enumerated, we did not know the
exact number of people in those clusters. The larger the number of missing households in a
cluster, the larger the range of possible population counts for that cluster. Therefore, clusters
with a large number of missing households will have a larger uncertainty in their population
counts. We incorporated this uncertainty in the statistical model via an observation error sub-
model shown in equation 1. For the livestock census and pilot cartography clusters the number
of missing households were known and the parameter values of the binomial were calculated
directly from the cluster level data. For the SMGL survey we did not know how many missing
households there were in each cluster and we therefore needed to determine the parameter
values of the binomial for the SMGL clusters using information from the other surveys. First, we
calculated the proportion of non-missing households (i.e. proportion of total households that
were enumerated) for every cluster surveyed in the livestock census and pilot cartography (n =
3,489). This provided information about the probabilities associated with different proportions
of enumerated households per cluster across two full surveys (Fig 2.). We then used this
probability distribution to fit the prop; parameter in equation 1 for SMGL clusters.



In each survey cluster i, the field enumerators counted P; people, but there were also
potentially some households that were unobserved. We included this process as an observation
model:

P; ~ Binomial(N;, 6; )

mhhs; (% - nhhi)

6, =1-
i N,

where N; is the total number of people in the cluster (observed and unobserved) and 6; is the
probability that a person who resided in the cluster was counted during the enumeration. The
primary purpose of this portion of the model is to estimate the total number of people N; in the
cluster. We calculated the observation probability 6; deterministically based on the mean
household size mhhs;, number of number of households enumerated nhh;, and the proportion
of the total households that were enumerated prop;.

We also used the observation model to estimate the parameter prop; using the observed data
from two surveys (livestock census and pilot cartography) to infer these values for the survey
where they were not available (SMGL). For this purpose, we modelled prop; as a stochastic
parameter rather than treating it solely as observed data:

prop; ~ Beta(5, m)
where 7 is a shape parameter estimated to fit this beta distribution to the observed data.

The next portion of the model was designed to estimate the population density D; for
each cluster i based on the estimate of total population N; (above) and the observed total
building area 4;:

N; ~ Poisson(D;A;)
D; ~ LogNormal(u;, t;)

where y; is the expected population density (i.e. the mean of the log-normal distribution) for
cluster i and t; is the precision of that expectation. Note that precision is the inverse of variance
(tr; = 072) and this term provides a measure of uncertainty (i.e. residual variance).

We modelled the expected population density y; as a linear function of the set of covariates X;:
Wi = Aspa+ BX1i+ 6sXa; +VsX3i

We used a hierarchical random intercept to account for correlations among clusters in the same
settlement type s, province p, and division d. We also used random slopes for two covariates (X,
and X3) to estimate the effects of these covariates for each settlement type s.

Samples that were collected for the livestock census survey used a PPS sampling design rather
than random sampling. PPS sampling design may result in a sample that contains more data
from areas with high population density, which would bias our estimates of population density
D; if not accounted for. We used a weighted-precision approach (similar to weighted-likelihood
or inverse-variance weighting) to account for this:
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where w; are the model weights (described above). These model weights are the inverse of the
probability that a cluster was selected for the survey. This weighted-precision model decreases
the influence of clusters from high population density areas that were over-represented in the
sample compared to lower population density areas that were under-represented in the sample.
This provides an unbiased estimator of population density from non-random weighted survey
data.
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Fig. 2. Frequency distribution of the proportion of total households enumerated in a survey cluster across
two surveys (pilot mapping and livestock census survey); n=3,489.

The model was fit using JAGS v4.3.0 (Plummer, 2003) where 3 chains were run, each
with burn-in and adapt phases of 10,000 and 1,000 iterations, respectively. A total of 35,000
iterations per chain were run in the post -burnin and -adapt phases. To eliminate
autocorrelation among a parameter’s estimates within a chain, iterations were thinned so that
every 3rd iteration was kept. We checked for model convergence using the gelman.diag function
in the coda R package which allows the potential scale reduction factor (psrf) values to be
calculated (Plummer et al, 2012). The psrf is a measure of the variance between chains
compared to the variance within chains. When these variances are similar, the chains have
reached their target distribution and therefore psrf scores less than 1.1 indicate chain
convergence. In instances where the psrf score was above 1.1 we continued running the model
until model convergence was achieved.

To check that the model is not overfitting to the data, we performed 10-fold cross validation.
This involved re-running the model 10 times with a different 10% of the input data held out in
each run. As with the original model, each cross validation model was run until either model
convergence was achieved or for 35,000 iterations without convergence. Across all cross
validation models, nine (out of 2605) posterior N; (population counts) and/or D; (population
densities) did not fully converge, although all had a psrf score of <1.3. Running the relevant
cross validation models for longer may produce slightly more accurate cross validation results,
however, we confirmed that none of the nine predictions had a corresponding observed value
outside of the 95% CI and so we believe that this would make very little difference to the
results.
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2.3 Predictions and Final Dataset

For every ~100m x 100m grid cell across Zambia we calculated the probability distribution of
population counts (i.e. posterior predictions) using a grid cell’s covariate values and the
parameterised model above. Note that the missing households sub-model aimed to allow for
accurate parameterisation of the regression model, and is not needed for the predictions where
we were estimating N; not P;. The grid cell level posterior distributions are available in the SQL
database (“ZMB_population_v1_0_sql.sql’) of the publicly available dataset. The mean of the
posterior predictions for grid cell level population estimates can be found in the raster
ZMB_population_v1_0_gridded.tif. To enable users to quickly identify areas of comparatively
high and low uncertainty in the mean population estimates, we generated a complementary
uncertainty raster: ZMB_population_v1_0_uncertainty.tif. The uncertainty values here are the
difference between the upper and lower 95% CI of the probability distribution divided by the
mean of the probability distribution: (upper - lower)/mean. This layer offers one measure of
uncertainty and alternative measures can be calculated using the SQL database. Uncertainty
estimates cannot be summed across grid cells to produce an uncertainty measure for a multi-
cell area. Uncertainty for larger areas should be calculated by summing the grid cell level
probability distributions to generate a new probability distribution for that area, from which the
correct uncertainty measure can be calculated. This process is automated by the woprVision
web application (https://apps.worldpop.org/woprVision) and the wopr R package (Leasure et
al 2020b). To accompany district and province mean population estimates, we have pre-
calculated the wupper and lower 95% CI, and these are available in the
ZMB_population_v1_0_admin.zip shapefiles.

We also produced population estimates for individual age-sex groups by multiplying the
gridded mean population estimates (ZMB_population_v1_0_gridded.tif) by regional level age-sex
proportions. These proportions are accessible via this portal:
https://www.portal.worldpop.org/demographics/

All data processing and analysis was carried out using R (v.3.6.0) (R Core Team, 2013) with
the exception of the rasterisation of the district and province boundaries which was carried out
in ArcGIS Pro (ESRI, 2018).

3 Results

3.1 Assessment of Building Footprints data

The building footprints data largely represents a recent distribution of buildings. Across the
whole country, 93% of the building footprints were extracted from imagery between 2017 and
2019, and across the clusters used to fit the statistical model, this was 96%. In Table 1. we
present summaries of the distribution of building footprints across imagery years, and Fig. 3.
shows a histogram of building footprints imagery dates by month for all building footprints
used in for the grid cell level population predictions. From these assessments we do not believe
there is any significant mismatch in the building footprints and the dates the survey data were
collected. For the 7% of the country where building footprints represent dates earlier than
2017, we advise that the gridded population estimates be used with caution. The modal year of
the Zambia building footprints for each grid cell are available in Dooley et al. (2020).
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Table 1. Distributions of building level imagery years for buildings used in the grid cell level predictions
(columns 2 and 3), and cluster level model fitting (columns 4 to 9).

Year of Building % of  Building % of Number % of Number % of
sat. count total count cluster of  clusters’ of  clusters’
imagery building across  building clusters oldest clusters modal
used to count survey count oldest imagery modal imagery
extract areas imagery year imagery year
building year year
2010 2524 0.03 0 0 0 0 0 0
2011 14701 0.17 1031 0.11 8 0.31 5 0.19
2012 22011 0.26 1003 0.1 11 0.42 3 0.12
2013 66615 0.78 3657 0.38 11 0.42 8 0.31
2014 93433 1.09 7198 0.75 25 0.96 24 0.92
2015 161703 1.89 17223 1.79 80 3.07 51 1.96
2016 219335 2.56 8729 0.91 35 1.34 33 1.27
2017 1764415 20.62 109990 11.44 442 16.97 416 15.97
2018 3343855 39.09 213869 22.25 729 27.98 763 29.29
2019 2866186 33.50 598725 62.27 1264 48.52 1302 49.98
Total 8554778 100 961425 100 2605 100 2605 100
1500000
1000000
500000
0 —EEL FI ([ e .—J‘Irﬂﬂﬂ_r].—ﬂ H’L.—._rll'ﬂ H_HV |_|

Fig. 3. Histogram of building footprints imagery date for all building footprints used for the grid cell level
population predictions.
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3.2. Model Fit

For assessing model fit we compare observed and predicted N; (true population count) and D;
(population densities). As we did not have the observed number of missing households for the
SMGL survey, we did not have an observed N; for SMGL clusters (just observed P; values). We
could have used the modelled mean estimate of missing households to calculate N; for SMGL
clusters but this would have likely led to overstating the model fit. To present a more
conservative assessment of model fit we examined observed and predicted N; and D; for PM and
LSC clusters only. Due to unknown population counts for any missing households, we calculated
observed N; by assuming missing households have a population count equal to their cluster’s
mean household size. Given that we filtered clusters such that they must include at least 80% of
total households enumerated, we believe that this is a reasonable value for observed N; to
assess model fit.

Observed vs predicted N; and D; are shown in Fig. 4 for both in-sample and out-of-
sample (cross-validation) results. The corresponding model statistics are presented in Table 2.
The model statistic results show that model performance is maintained when 10% of the input
data is held out, indicating that the model is not overfitting to the data. We find a very high
correlation between observed and predicted population counts (R-squared = 0.959 for in-
sample N;) and lower correlation between observed and predicted population densities (R-
squared = 0.595 for in-sample D;). This suggests that the population densities responsible for
lowered correlation between observed and predicted values, correspond to clusters with small
total building area as they have little consequence on the overall correlation between observed
and predicted population count. These results are not surprising given that the data included
clusters with very small population sizes, across which the variation in number of buildings per
cluster will result in higher variation in population density, compared to clusters with relatively
large population counts. In other words, over a threshold number of buildings, population
densities typical of the area can be calculated more accurately. For future testing of the model,
we could assess model fit when clusters below a threshold population size are excluded from
the input data.
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Fig. 4. In-sample and out-of-sample observed vs predicted population counts N; and population densities
D; (people per total building area); n=1981. Circles represent the cluster mean prediction and lines show
their corresponding 95% credible intervals.

Table 2. Model statistics for in-sample and out-of-sample (cross validation) results. Statistics shown are
bias (mean of residuals), imprecision (standard deviation of residuals), inaccuracy (mean of absolute
residuals) and R-squared (correlation between absolute observed and predicted values). N; is the true
population count and D; is population density (people per building area). Numbers given for bias,
imprecision and inaccuracy are people with the standardised values (i.e. divided by predicted N; or D;) in
parentheses. By random chance we expect the percentage of observations outside the predicted 95%
credible intervals (CI) to be ~5%.

Model Parameter Bias Imprecision  Inaccuracy R2 Percentage of
observations outside
95% CI of predictions

in- N; 15 (0.01) 769 (0.46) 286 (0.30) 0.959 4.0%

sample D; 15 (0.01) 248 (0.46) 157 (0.30) 0.595 4.8%

out-of- N; 38 (0.00) 816 (0.50) 308 (0.32) 0.953 5.8%

sample D; 17 (0.00) 276 (0.50) 171 (0.32) 0.511 6.5%
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In addition to the correlations between observed vs prediction values, as described above, we
checked for spatial autocorrelation in the standardised residuals ((mean prediction values -
observed)/observed). The standardised residuals give a measure of variance in the data
unexplained by the model and therefore commonalities among clusters with similar residual
values indicates that the model could be improved if those commonalities were accounted for.
There is little evidence for spatial autocorrelation in the standardised residuals, as shown in Fig.
A1, which suggests that the model accounts for spatial variation well.

To understand whether the model is capturing the uncertainty in the data well, we draw
our attention the 95% Cls. By random chance we expect the percentage of observations outside
the predicted 95% credible intervals (CI) to be ~5% or lower. Table 2. shows that <5% and <7%
of observations were outside the predicted 95% CI for in-sample and out-of-sample results,
respectively. While this demonstrates that the model is capturing uncertainty well, we looked
for commonalities among the instances where observations were outside the predicted 95% Cls
to investigate whether we can make improvements to the model. Generally we found little
evidence for biases across the full set of clusters with observations outside the 95% Cls,
however, we did identify three common features among small groups of clusters where 95% CI
predictions consistently miss the observed value.

The first is overprediction in six clusters that are located in the industrial area of central
Lusaka. The second and third occur in some rural pilot mapping clusters in north Chongwe. For
one set there is underprediction and for another there is overprediction. For the set where
observed counts (and densities) are higher than the 95% CIs predictions, i.e. model
underprediction, the people per household are in-line with the wider data set (see Fig. A2.),
suggesting that these clusters contain a relatively small number of building footprints compared
to other clusters. The date of the imagery used to extract building footprints in this area is just a
few months after the survey data collection so it is unlikely that there is a mismatch in the
building footprints and the surveyed buildings. Further assessment of how these clusters differ
to other rural clusters may be required here.

For the set where observed counts (and densities) are lower than the 95% Cls
predictions, i.e. model overprediction, it is likely that the clusters contain areas that were not
surveyed as there are sections of the clusters that do not have GPS locations and, again, here
there is no mismatch in the dates of the survey and the building footprints. To improve our data
analysis we could delineate cluster boundaries in the rural areas based on the GPS locations
instead of the block approach, however, given the building footprints we believe that
predictions in these few clusters are realistic and that the ‘overprediction’ is in fact due to
errors in population density brought about by the clusters including unsurveyed buildings.

For data points (locations) where the model describes the data well there will be low
uncertainty in the mean prediction. Conversely, we find high uncertainty (wide 95% CI) where
the model explains less of the observed variance in population densities. Fig. 4. shows two
example areas where there is relatively high uncertainty in the population estimates. In the
Solwezi example, we note that one of the five survey clusters in the south-west of the city has a
much lower observed population density than the other four clusters. All five cluster areas are
residential with relatively high building density (compared to all other clusters) and have
similar covariate values to one another. The low density of one of these cluster is therefore
surprising. Further investigation of the low density cluster reveals that a section inside the
cluster boundary that contains buildings (according to the building footprints) have no GPS
located households. This results in the population density being lower than expected given the
other four similar survey clusters in close proximity. There may be a number of possible
reasons for this: a) the area could have been undergoing development at the time of the survey
(early 2018) and the new buildings are present in the building footprints (imagery year for this
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area is 2019); b) the fieldwork may not have been complete; or, c) there may have been an error
in collating/transferring the data. We make similar observations for the Chirundu example.

A)

Lubumbashi

Legend
Uncertainty in population estimates

B 0721844137 - 15
B 1 500000001 - 3

Service Layer Credits: Sources. Esn, HERE

[ 13000000001 - 45 Garmin, USGS, Intermap, INCREMENT P
NRCan, Esn Japan, METI, Esn China (Hong
I:I 4.500000001 - & Kong), Esn Korea, Esri (Thailand), NGCC, (¢)

B 6 000000001 - 1628664589

Fig. 4. Areas of high uncertainty in the modelled population estimates. A) shows relatively high
uncertainty for Solwezi (North-Western) and Mansa (Luapula), compared to other urban centres in
Copperbelt. B) shows high uncertainty levels in Chirundu’s population estimates.

3.3. Summary of Population Estimates

The national modelled mean population estimate for Zambia is 21,672,678 (lower and upper
95% CI: 20,929,048 and 22,491,208). Population estimates per province can be found in Table
A2.

4 Discussion

All model assessments suggest that the statistical model that we developed performed well and
was appropriate for predicting population estimates across Zambia. There was little evidence of
mismatch in the dates of survey data collection and building footprints, and we therefore
believe that the gridded population estimates represent a realistic distribution of the Zambian
population around 2018/2019. We encourage users of the modelled population estimates to
consult the uncertainty measures via the uncertainty raster and/or the woprVision web
application or the wopr R package (Leasure et al. 2020b;
https://apps.worldpop.org/woprVision). We note that there is particularly high uncertainty in
the urban centres of Solwezi and Chirundu, and highlight that caution should be taken when
using the estimates for the industrial area in central Lusaka and the small areas where the
building footprints data correspond to 2016 or earlier.

16



In the short term, the estimates could potentially be improved by re-fitting the model

parameters using input data that excludes clusters with very small population counts and
carrying out a sensitivity analysis for the survey weights assigned to the pilot mapping and
SMGL clusters to assess any impact these might have. In the longer term, we suggest several
areas for future research using these survey data:

Developing methods to create clusters from surveys that cover large areas like the pilot
mapping. We took an objective approach of splitting up the area into blocks so that the
impact of GPS error was minimal. Future work could include developing cluster
boundaries for target population counts that optimise uncertainties in cluster
population and building counts.

Exploring the integration of uncertainties in cluster building counts due to cluster
boundary locations based on estimated number of buildings within certain distances of
the boundaries.

Mapping areas that are predominantly non-residential and, if there are enough survey
data covering these areas, incorporating this class of settlement as a fourth settlement
type in the statistical model. Methods for classifying settlement types, such as those
described in Jochem et al, 2020, could potentially be use for identify non-residential
areas in Zambia.

Additionally, future work should be done to understand and improve the reporting of missing
households so that refinements to the observation error sub-model can be carried out.
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5 Appendix

Table A1l. Final number of survey clusters by survey and settlement type used for the regression model.

Survey
Livestock Pilot Mapping SMGL Total
Census
Settlement Rural 568 675 598 1841
type Small urban 90 48 12 150
Large urban 124 476 14 614
Total 782 1199 624 2605

Table A2. Modelled population estimates per province for two different boundaries datasets. The

production of the boundaries dataset included in modelled population data set v1.0 was facilitated by
GRID3 in collaboration with the Government of Zambia (Ministry of Lands, Ministry of Local Government,
Zambia Statistics Agency). Note that both boundaries datasets are not official government boundaries.

Boundaries included in v1.0 data release GADM boundaries
Province Mean Median Lower Upper Mean Median Lower Upper
95% CI 95% CI 95% CI 95% CI
Central 3011011 2999967 2699765 3401607 3168970 3157394 2876301 3539294
Copperbelt 2658301 2652437 2456375 2890198 2662498 2656679 2460544 2894187
Eastern 2106629 2100820 1937151 2311906 2079088 2073297 1909406 2284325
Luapula 1542872 1534869 1406710 1722077 1522817 1514593 1387910 1701039
Lusaka 4038056 4032466 3773834 4323142 3560244 3554740 3332194 3812146
Muchinga 1272030 1267962 1163770 1402707 1276941 1272992 1169836 1406873
Northern 1975526 1973258 1826226 2137781 2003601 2001197 1855897 2165335
North-
Western 1310550 1299251 1177577 1514415 1301451 1290114 1169234 1504728
Southern 2162316 2158294 2015699 2332697 2482294 2477990 2319116 2666795
Western 1595389 1589396 1468466 1760928 1590697 1584654 1464643 1754654
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Fig. A1l. Spatial autocorrelation in standardised residuals (variance unexplained by the statistical model)
for population counts (top) and densities (bottom). Red dots indicate the distances at which there is
significant spatial autocorrelations. These occur between clusters that are ~100 km, ~ 900 km, ~1,100
km and ~1,175 km apart.
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9 License

This report may be redistributed following the terms of a Creative Commons Attribution-
NoDerivatives 4.0 International (CC BY-ND 4.0) License.

10 Code

The model code used to generate the dataset (WorldPop, 2020) is available here:
https://github.com/cadooley/ZMB_pop_v1.0. Because of data privacy we are unable to share
the input data and pre-modelling code.
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