Nepal Population Map Metadata Report

Prediction Weighting Layer Used in Population Redistribution

The data presented below represent the predicted number of people per ~100 m pixel as estimated using the random forest (RF) model as described in Stevens, et al. (2015). The following pages contain a description of the RF model and its covariates, their sources and any metadata collected for each covariate. The prediction weighting layer is used to dasymetrically redistribute the census counts and project counts to match estimated populations based on UN estimates for the final population maps provided by WorldPop.

Stevens, F. R., Gaughan, A. E., Linard, C., & Tatem, A. J. (2015). Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLOS ONE, 10(2), e0107042. doi:10.1371/journal.pone.0107042

plot of chunk predict_density

Nepal Census Data and Observed Population Density

These data are the population density values used to estimate the RF model used to create the prediction weighting layer you see above. Values represent population density as measured by people per hectare and calculated from population counts within each census unit. These values are used as the dependent variable during model estimation.

Nepal Census Data, 2011, Admin-level 5

Folder: Census
File Name: census.shp
Source: Central Bureau of Statistics of Nepal
Description: These census data were acquired in April 2014 for use in WorldPop endeavors. Required fields for map production are ADMINID and ADMINPOP
Class: polygon
Derived Covariates:
area, buff, zones,

class       : SpatialPolygonsDataFrame 
features    : 36036 
extent      : 115788, 916842, 2918485, 3370757  (xmin, xmax, ymin, ymax)
coord. ref. : NA 
variables   : 18

plot of chunk census_data


Random Forest Model and Diagnostics

These output and figures outline the estimated RF model that is used to predict the population density weighting layer. The model is fitted to the population density values for the preceding census data using covariates aggregatedfrom the ancillary data sources summarized following the model diagnostics.


Call:
 randomForest(x = x_data, y = y_data, ntree = popfit$ntree, mtry = popfit$mtry,      nodesize = length(y_data)/1000, importance = TRUE, proximity = F) 
               Type of random forest: regression
                     Number of trees: 500
No. of variables tried at each split: 22

          Mean of squared residuals: 0.39
                    % Var explained: 80

plot of chunk random_forestplot of chunk random_forestplot of chunk random_forest

Covariate Metadata

Remotely-sensed, ESA Landcover, 300m

Folder: Landcover
File Name: npl_lc_rc_nibb_rurb_maj_8bit.tif
Source: http://www.esa-landcover-cci.org/
Description: Land cover information was combined from a GlobCover 2010 coverage and fused with Landsat-derived urban/rural built area classification to construct a single land cover dataset.
Class: raster
Derived Covariates:
cls011, dte011, cls040, dte040, cls130, dte130, cls140, dte140, cls150, dte150, cls160, dte160, cls190, dte190, cls200, dte200, cls210, dte210, cls230, dte230, cls240, dte240, cls250, dte250, clsBLT, dteBLT,

class       : RasterBrick 
dimensions  : 5031, 8449, 42506919, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 400103, 1245003, 2901369, 3404469  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=44 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Landcover\Derived\landcover.tif 
names       : landcover 
min values  :         0 
max values  :       240 

plot of chunk covariate_reports


Suomi NPP VIIRS-Derived 2012 Lights at Night, 15 arc-second

Folder: Lights
File Name: DEFAULT: VIIRS 2012
Source: http://ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html
Description: These 'Lights at Night' data were derived from imagery collected by the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) which has a unique low-light imaging capability, developed for the detection of clouds using moonlight. In addition to moonlit clouds, the OLS also detects lights from human settlements, fires, gas flares, heavily lit fishing boats, lightning and the aurora.
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 4882, 8449, 41248018, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 99472, 944372, 2901169, 3389369  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Lights\Derived\lights.tif 
names       : lights 
min values  :  -0.31 
max values  :    215 

plot of chunk covariate_reports


WorldClim/BioClim Mean Annual Temperature 1950-2000, 30 arc-second

Folder: Temp
File Name: DEFAULT: BIO1
Source: http://www.worldclim.org/current
Description: WorldClim/BioClim 1950-2000 mean annual precipitation (BIO12) and mean annual temperature (BIO1) estimates (Hijmans et al., 2005) were downloaded, mosaicked and subset to match the extent of our land cover data for the mapping of this region.
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 4896, 8555, 41885280, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 89372, 944872, 2900469, 3390069  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Temp\Derived\temp.tif 
names       : temp 
min values  : -194 
max values  :  259 

plot of chunk covariate_reports


WorldClim/BioClim Mean Annual Precipitation 1950-2000, 30 arc-second

Folder: Precip
File Name: DEFAULT: BIO12
Source: http://www.worldclim.org/current
Description: WorldClim/BioClim 1950-2000 mean annual precipitation (BIO12) and mean annual temperature (BIO1) estimates (Hijmans et al., 2005) were downloaded, mosaicked and subset to match the extent of our land cover data for the mapping of this region.
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 4896, 8555, 41885280, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 89372, 944872, 2900469, 3390069  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Precip\Derived\precip.tif 
names       : precip 
min values  :    186 
max values  :   4404 

plot of chunk covariate_reports


Waterbodies, Distance-to (OSM) 2017

Folder: Waterbodies
File Name: waterbodies_distanceto.tif
Source: Open Street Map, Downloaded 2017-07, http://extract.bbbike.org/
Description: These data were provided at A geometric resolution: original in 0.4 arc seconds (~12 m, near the equator) under a cooperation agreement with the GUF project under the DLR Earth Observation Center.
Class: polygon
Derived Covariates:
cls, dst,

class       : SpatialPolygonsDataFrame 
features    : 226 
extent      : 111732, 917421, 2915517, 3369520  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 10

plot of chunk covariate_reports


Protected Areas

Folder: Protected
File Name: DEFAULT: WDPAfgdb_Sept2012.gdb
Source: World Database on Protected Areas, Downloaded September, 2012, UNEP, http://www.wdpa.org, http://protectedplanet.net
Description: These data are compiled by UNEP and distributed via the Protected Planet website. All protected areas were downloaded regardless of International Union for Conservation of Nature (IUCN) or any other designation, so they include sanctuaries, national parks, game reserves, World Heritage Sites, etc.
Class: polygon
Derived Covariates:
cls, dst,

class       : SpatialPolygonsDataFrame 
features    : 38 
extent      : 119036, 924200, 2942830, 3307726  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 26

plot of chunk covariate_reports


Urban Extents

Folder: Urban
File Name: DEFAULT: schneider-urban.shp
Source: Schneider, et al., United Nations
Description: These data were constructed from MODIS-derived imagery and provided to WorldPop researchers by Schneider, et al. as part of a global urban extents datasets.
Class: polygon
Derived Covariates:
cls, dte,

class       : SpatialPolygonsDataFrame 
features    : 240 
extent      : 399881, 1209793, 2923379, 3222166  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=44 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 2

plot of chunk covariate_reports


Elevation and Derived Slope, 3 second

Folder: Elevation
File Name: DEFAULT: Void-Filled DEM.gdb
Source: HydroSHEDS Void-Filled DEM (Lehnert, et al., 2006), http://hydrosheds.cr.usgs.gov/dataavail.php
Description: The HydroSHEDS data are the result of an effort to provide a globally consistent dataset consisting of NASA's Shuttle Radar Topography Mission (SRTM) data and have been processed, void-filled and corrected for use at large scales.
Class: raster
Derived Covariates:
, slope,

class       : RasterBrick 
dimensions  : 4880, 8549, 41719120, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 89572, 944472, 2901269, 3389269  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Elevation\Derived\elevation.tif 
names       : elevation 
min values  :        37 
max values  :      8629 

plot of chunk covariate_reports


Health Facilities, 2015

Folder: HealthFac
File Name: npl_hltfac_DoH_WHO_wgs84.shp
Source: The source of the data Survey Department of Nepal (http://ngiip.gov.np/) and data sponsor is WHO (World Health Organization).
Description: This dataset depicts the Health Infrastructure of Nepal as points and was downloaded from the Humanitarian Data Exchange, https://data.humdata.org/dataset/nepal-health-facilities-cod
Class: point
Derived Covariates:
cls, dst,

class       : SpatialPointsDataFrame 
features    : 8975 
extent      : 117496, 913430, 2923481, 3362222  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 5

plot of chunk covariate_reports


Buildings, (OSM) 2017

Folder: Buildings
File Name: bldings_osm_repaired.shp
Source: Open Street Map, Downloaded 2017-07, http://extract.bbbike.org/
Description: These data were downloaded as part of a per-country package of data layers made availalble as shapefiles through the http://extract.bbbike.org website, extracted from the Open Street Map (OSM) database. Distance to nearest feature was then calculated.
Class: polygon
Derived Covariates:
cls, dst,

class       : SpatialPolygonsDataFrame 
features    : 2528572 
extent      : 112286, 917245, 2923763, 3349518  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 5

plot of chunk covariate_reports


Residential Areas, (OSM) 2017

Folder: Residential
File Name: residential_osm.shp
Source: Open Street Map, Downloaded 2017-07, http://extract.bbbike.org/
Description: These data were downloaded as part of a per-country package of data layers made availalble as shapefiles through the http://extract.bbbike.org website, extracted from the Open Street Map (OSM) database. Distance to nearest feature was then calculated.
Class: polygon
Derived Covariates:
cls, dst,

class       : SpatialPolygonsDataFrame 
features    : 49448 
extent      : 118871, 920159, 2918612, 3347951  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 4

plot of chunk covariate_reports


Places (OSM) 2017

Folder: Places
File Name: places_osm.shp
Source: Open Street Map, Downloaded 2017-07, http://extract.bbbike.org/
Description: These data were downloaded as part of a per-country package of data layers made availalble as shapefiles through the http://extract.bbbike.org website, extracted from the Open Street Map (OSM) database. Distance to nearest feature was then calculated.
Class: polygon
Derived Covariates:
cls, dst,

class       : SpatialPolygonsDataFrame 
features    : 468 
extent      : 119897, 924200, 2937850, 3378350  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 5

plot of chunk covariate_reports


Roads Network, Distance-to (OSM) 2017

Folder: Roads
File Name: roads_distanceto.tif
Source: Open Street Map, Downloaded 2017-07, http://extract.bbbike.org/
Description: These data were downloaded as part of a per-country package of data layers made availalble as shapefiles through the http://extract.bbbike.org website, extracted from the Open Street Map (OSM) database. Distance to nearest feature was then calculated.
Class: linear
Derived Covariates:
cls, dst,

class       : SpatialLinesDataFrame 
features    : 755 
extent      : 105800, 926191, 2911016, 3377678  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
variables   : 13

plot of chunk covariate_reports


Global Urban Footprint, 12m, 2015, Distance-to-Edge

Folder: GUF
File Name: GUF+2015_Nepal_prj_dte.tif
Source: Global Urban Footprint, 2016, DLR Earth Observation Center, http://www.dlr.de/eoc/
Description: High Resolution Settlement Layer, open source data from Facebook's Connectivity Lab and the Center for International Earth Science Information Network (CIESIN)
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 4826, 8156, 39360856, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 114672, 930272, 2903869, 3386469  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\GUF\Derived\guf.tif 
names       :   guf 
min values  :  -721 
max values  : 67617 

plot of chunk covariate_reports


Facebook Settlement layer

Folder: Facebook_DTE
File Name: NPL_FB_DTE.tif
Source: Facebook's Connectivity Lab and the Center for International Earth Science Information Network (CIESIN), http://ciesin.columbia.edu/data/hrsl/
Description: These data were provided under a cooperation agreement with the GHSL project under the ECJRC as the 2014 beta versions and were converted to binary datasets at 38m.
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 5161, 8437, 43543357, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 86672, 930372, 2890969, 3407069  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\Facebook_DTE\Derived\facebook_dte.tif 
names       : facebook_dte 
min values  :         -707 
max values  :        12323 

plot of chunk covariate_reports


Global Human Settlement Layer Beta, 38m, 2015, Distance-to-Edge

Folder: GHSL
File Name: GHSL_100m_NPL_binary_WGS84_projected_DTE.tif
Source: Global Human Settlement Layer, 2015, ECJRC, http://ghslsys.jrc.ec.europa.eu
Description: NA
Class: raster
Derived Covariates:
,

class       : RasterBrick 
dimensions  : 4822, 8343, 40229946, 1  (nrow, ncol, ncell, nlayers)
resolution  : 100, 100  (x, y)
extent      : 96072, 930372, 2904069, 3386269  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=tmerc +lat_0=0 +lon_0=84 +k=0.9996 +x_0=500000 +y_0=0 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0 
data source : D:\Working_RF\data\NPL\GHSL\Derived\ghsl.tif 
names       :   ghsl 
min values  : -26839 
max values  :  46425 

plot of chunk covariate_reports